
CMPT 295 – Fall 2021

Assignment 6

Objectives:

 Recursion in x86-64 assembly code

 Manipulating 2D arrays (matrices) in x86-64 assembly code

 Experimenting with Stack Randomization

 There are some extra problems at the end of this assignment!

Submission:

 Submit your document called Assignment_6.pdf, which must include your answers to all

of the questions in Assignment 6.

o Add your full name and student number at the top of the first page of your

document Assignment_6.pdf.

o You will also need to submit your source code file produced in Question 3 on

CourSys. More submission details outlined in Question 3.

 Submit your assignment Assignment_6.pdf on CourSys.

Due:

 Friday, Nov. 5 at 23:59:59

 Late assignments will receive a grade of 0, but they will be marked (if they are submitted

before the solutions are posted on Monday) in order to provide feedback to the

student.

Marking scheme:

 Question 1 and Question 2 of this assignment will be marked for correctness.

 Question 3 of this assignment will be marked for completeness.

 The amount of marks for each question is indicated as part of the question.

 A solution will be posted on Monday after the due date.

CMPT 295 – Fall 2021

1. [5 marks] Recursion in x86-64 assembly code

In this problem, you are asked to rewrite the mul function you wrote in Assisgnment 4. This

time, instead of using a loop, you are to use recursion. In doing so, you must use the stack (so

we can get some practice), either by pushing/popping or by getting a section of it (e.g., subq

$24, %rsp) and releasing it (e.g., addq $24, %rsp) at the end of your program.

Yes, it is certainly possible to recursively implement mul without saving the values of the

argument registers (edi and esi) onto the stack. However, for practice's sake, let's save them

onto the stack as stated in the question.

Use your files from Assignment 4: main.c, makefile and calculator.s. Then, copy

the following and paste it over (replace) your entire mul function in calculator.s:

mul: # performs integer multiplication - when both operands

are non-negative!

x in edi, y in esi

You can assume that both parameters are non-negative.

Requirements:

- cannot use imul* instruction

(or any kind of instruction that multiplies such as mul)

- you must use recursion (no loop) and the stack

Implement this mul function satisfying its new requirements (above in green). You must

also satisfy the requirements below.

Requirements:

 Your code must be commented such that others (i.e., TA’s) can read your code and
understand what each instruction does.

 About comments:
o Comment of Type 1: Here is an example of a useful comment:

cmpl %edx, %r8d # loop while j < N

o Comment of Type 2: Here is an example of a not so useful comment:
cmpl %edx, %r8d # compare %edx with %r8d

Do you see the difference? Make sure you write comments of Type 1.

 Make sure you update the header comment block in calculator.s.

 You must use the makefile provided in Assignment 4 when compiling your code. This
makefile cannot be modified.

 You cannot modify the prototype of the function mul. The reason is that your code
may be tested using a test driver built based on this function prototype.

CMPT 295 – Fall 2021

 Your code must compile (using gcc) on our target machine and execute on our target
machine.

 You must follow the x86-64 function call and register saving conventions described in

class and in the textbook.

 Do not push/pop registers unless you make use of them in your function mul and

their content needs to be preseved. Memory accesses are expensive! We’ll soon see

why!

Submission:

 Oce your new calculator.s compiles, executes and has been tested (i.e., it

multiplies) on our target machine, copy and paste the entire content of your new

calculator.s in this assignment (yes, it will still have the other functions you

implemented in Assignment 4 in it – that is OK!).

2. [13 marks] Manipulating 2D arrays (matrices) in x86-64 assembly code

In linear algebra, a matrix is a rectangular grid of numbers. Its dimensions are specified by its

number of rows and of columns. This question focuses on the representation and

manipulation of square matrices, i.e., where the number of rows and the number of columns

both equal n.

Here is an example of a square matrix where n = 4:

 1 -2 3 -4 A00 A01 A02 A03

A = -5 6 -7 8 = A10 A11 A12 A13

 -1 2 -3 4 A20 A21 A22 A23

 5 -6 7 -8 A30 A31 A32 A33

Note the notation Aij refers to the matrix entry at the ith row and the jth column of A. Each row

of the matrix A resembles a one dimensional array in the programming language C, with the

value of j increasing for each element. The matrix A has i such rows.

Because of this resemblance, matrices can be represented (modeled) in our C programs using

two dimensional arrays. One dimensional arrays are stored in contiguous memory space,

where their element 0 is followed by their element 1 which is followed by their element 2,

etc… Two-dimensional arrays follow a similar pattern when stored in memory: the one row

following the other. In other words, the elements from row 0 are followed by the elements

from row 1, which are followed by elements of row 2, and so on. Thus, a two dimensional

array, representing a n x n matrix, has n2 elements, and the base pointer A, contains the

address of the first element of the array, i.e., the 0th element of row 0.

CMPT 295 – Fall 2021

Because of this regular pattern, accessing a two dimensional array element can be done in a

random fashion, where the address of Aij = A + L (i * n + j), where L is the size (in bytes) of

each array element. For example, when L = 1, as it is for this assignment, then the element

A32 can be found at address A + 1 (3 * 4 + 2) = A + 14.

In this question, you are asked to rotate a matrix 90 degrees clockwise. One way to do this is

to first transpose the matrix then to reverse its columns.

Wikipedia says that, in linear algebra, the transpose of a matrix is an operator which flips a

matrix over its diagonal, i.e., it switches the row and column indices of the matrix by

producing another matrix denoted as AT. Thank you, Wikipedia.

Here is an example where AT is the transpose of matrix A (using the diagonal “1, 6, -3, -8”):

 1 -2 3 -4 1 -5 -1 5

A = -5 6 -7 8 AT = -2 6 2 -6

 -1 2 -3 4 3 -7 -3 7

 5 -6 7 -8 -4 8 4 -8

We reverse the columns of the transpose matrix AT, by swapping the last column with the

first column, the penultimate column with the second column, etc...

Using the same example as above, here is what AT looks like once it has been reversed. We

call this final matrix A’:

 1 -5 -1 5 5 -1 -5 1

AT = -2 6 2 -6 A’ = -6 2 6 -2

 3 -7 -3 7 7 -3 -7 3

 -4 8 4 -8 -8 4 8 -4

As you can see, A’ is the rotated version of A (A has been rotated by 90 degrees clockwise).

Your task is to implement these two functions in x86-64 assembly code:

void transpose(void *, int);

void reverseColumns(void *, int n);

When they are called in this order, using a two dimensional array as their first argument, the

effect will be to rotate this array by 90 degrees clockwise.

Download Assn6-Files_Q3.zip, expand it and open the files (makefile, main.c

and an incomplete matrix.s.). Have a look at main.c and notice its content. Have a look

at matrix.s. It contains functions manipulating matrices such as copy, transpose and

CMPT 295 – Fall 2021

reverseColumns. You need to complete the implementation of the functions

transpose and reverseColumns. The function copy has already been implemented

for you. You may find hand tracing its code useful. You may also want to have a look at the

video recording of Lecture 22 Part 1 posted on our course web site in which the code of the

copy function copy.s is explained. Finally, you may want to “make” the given code and see

what it does.

Requirements:

 Your code must be commented such that others (i.e., TA’s) can read your code and
understand what each instruction does.

 About comments:
o Comment of Type 1: Here is an example of a useful comment:

cmpl %edx, %r8d # loop while j < N

o Comment of Type 2: Here is an example of a not so useful comment:
cmpl %edx, %r8d # compare %edx with %r8d

Do you see the difference? Make sure you write comments of Type 1.

 You must add a header comment block to the file matrix.s. This header comment

block must include the filename, the purpose/description of its functions, your name,

your student number and the date.

 You must use the makefile provided when compiling your code. This makefile cannot

be modified.

 You cannot modify the code that has been supplied to you in the zip file. This signifies

that, amongst other things, you must not change the prototype of the functions given.

The reason is that these functions may be tested using a test driver built based on

these function prototypes.

 Your code must compile (using gcc) on our target machine and execute on our target
machine. Your code must also solve the problem, i.e., rotate the array by 90 degrees
clockwise.

 You must follow the x86-64 function call and register saving conventions described in

class and in the textbook.

 Do not push/pop registers unless you make use of them in your functions and their

content needs to be preseved.

Submission:

 Electronically submit your file matrix.s via CourSys.

CMPT 295 – Fall 2021

 Also copy and paste the entire content of your matrix.s in this assignment. Make

sure it is the same version of matrix.s that compiles and executes on our target

machine.

3. [2 marks] Experimenting with Stack Randomization

We saw inn Lecture 22 that one of the ways to counter buffer overflow attacks was to use

compilers (like gcc for Linux) that implemented “safety” mechanisms such as Stack

Randomization. On way the compiler does this stack randomization is by assigning a different

start address to the stack every time a program execxutes. This changing start address to the

stack makes it difficult for hackers to predict the location of return addresses on the stack.

Before you proceed with this question, make sure you read Section 3.10.4 in our textbook

and review our course lecture notes on this topic.

In this assignment you are asked to confirm or disprove the fact that gcc does implement

Stack Randomization by running your own experiement as follows:

 Download from our course web site (see Lecture 22) the password program

(password.c) we saw as part of our Lecture 22 demo.

 Add a statement that prints the memory address of the first byte of the array

password.

 Execute your program 10 times and record the addresses at which this local variable

array is stored on the stack.

 Then state your conclusion and support it with your experiential results.

 Finally, calculate the range of variance in the memory addresses you obtained (if

any) over the 10 executions of your program.

 Copy the content of your password.c into this assignment (into this

Assignment_6.pdf document).

Extra Problems – Not to be submitted – Not for grades, but for practice only!

A. Passing arguments and returning return value

Have a look at Slide 5 of our Lecture 18. As you hand trace the code, comment each line

explaining what each instruction does and why?

Here is an example:

CMPT 295 – Fall 2021

pushq %r13 # main function needs to use registers for temporary storage so it saves the

original value of the callee saved register %r13 so it can make use of it.

B. Recursion in x86-64 assembly code

Have a look at Slide 6 of our Lecture 20.

1. Hand trace the C code of the function countOnesR(…) and figure out what it does.

Feel free to use the second test case on Slide 13 (of our Lecture 20) as you are hand

tracing the code.

2. Hand trace its assembly code and as you do so, draw its stack diagram on Slide 14. Feel

free to use the Register Table, if you find it useful.

3. Create a third test case following the same format as the format used on Slide 13.

