
CMPT 295 – Fall 2021

Assignment 3

Objectives:

 Memory addressing modes

 Assembly instructions

 Reading object code (machine level instruction) expressed in hexadecimal and

understanding how these instructions are stored in memory

 Writing a C program that corresponds to given assembly program

Submission:

 Submit your document called Assignment_3.pdf, which must include the number of the

question you are answering (e.g., Question 1) followed by your answer, keeping the

questions in their original numerical order. Formatting your assignment document this

way makes it a lot easier to mark.

o Add your full name and student number at the top of the first page of your

document.

 If you write your answers by hand (as opposed to using a computer application to

write them), when putting your assignment document together, do not take photos of

your assignment sheets! Scan them instead! Better quality -> easier to read -> easier to

mark!

Due:

 Friday Oct. 8 at 4pm on CourSys

 Late assignments will receive a grade of 0, but they will be marked (if they are submitted

before the solutions are posted on Monday) in order to provide feedback to the

student.

Marking scheme:

 This assignment will be marked as follows:

o Questions 1, 2 and 3 will be marked for correctness.

 The amount of marks for each question is indicated as part of the question.

CMPT 295 – Fall 2021

 A solution will be posted on Monday after the due date.

1. [10 marks] Memory addressing modes

Assume the following values are stored at the indicated memory addresses and registers:

Memory Address Value Register Value

0x230 0x23 %rdi 0x230

0x234 0x00 %rsi 0x234

0x235 0x01 %rcx 0x4

0x23A 0xed %rax 0x1

0x240 0xff

Imagine that the operands in the table below are the Src (source) operands for some

unspecified assembly instructions (any instruction except lea*), fill in the following table

with the appropriate answers.

Note: We do not need to know what these assembly instructions are in order to fill the

table.

Operand Operand Value
(expressed in
hexadecimal)

Operand Form
(Choices are: Immediate, Register

or one of the 9 Memory
Addressing Modes)

%rsi Register

(%rdi) Indirect memory addressing mode

$0x23A

0x240 0xff

10(%rdi) “Base + displacement” memory
addressing mode

560(%rcx,%rax)

-550(, %rdi, 2)

CMPT 295 – Fall 2021

0x6(%rdi, %rax, 4)

Still using the first table listed above displaying the values stored at various memory

addresses and registers, fill in the following table with three different Src (source) operands

for some unspecified assembly instructions (any instruction except lea*). For each row,

this operand must result in the operand Value listed and must satisfy the Operand Form

listed.

Operand Value Operand Form
(Choices are: Immediate, Register or one

of the 9 Memory Addressing Modes)

 0x00 Absolute memory addressing mode

 0x00 Scaled indexed memory addressing mode

 0x00 Indexed memory addressing mode

2. [2 marks] Machine level instructions and their memory location

Consider a function called arith, defined in a file called arith.c and called from the

main function found in the file called main.c.

This function arith performs some arithmetic manipulation on its three parameters.

Compiling main.c and arith.c files, we created an executable called ar, then we

executed the command:

objdump –d ar > arith.objdump

We display the partial content of arith.objdump below. The file arith.objdump is

the disassembled version of the executable file ar.

Your task is to fill in its missing parts, which have been underlined:

0000000000400527 <arith>:

 400527: 48 8d 04 37 lea (%rdi,%rsi,1),%rax

 ______: 48 01 d0 add %rdx,%rax

 40052e: 48 8d 0c 76 lea (%rsi,%rsi,2),%rcx

 ______: 48 c1 e1 04 shl $0x4,%rcx

 400536: 48 8d 54 0f 04 lea 0x4(%rdi,%rcx,1),%rdx

 ______: 48 0f af c2 imul %rdx,%rax

CMPT 295 – Fall 2021

 ______: c3 retq

3. [8 marks] C program versus assembly program

Do the Homework Problem 3.58 at the end of Chapter 3. Make sure you satisfy the

following requirements:

o Your code must be commented and well spaced such that others (i.e., TA’s) can read
your code and understand what each instruction does.

 About comments:

o Comment of Type 1: Here is an example of a useful comment:

cmpl %edx, %r8d # loop while j < N

o Comment of Type 2: Here is an example of a not so useful comment:

cmpl %edx, %r8d # compare %edx with %r8d

Do you see the difference? Make sure you write comments of Type 1.

o You cannot use the goto statement.

o You must write your program using C (not C++) and your program must compile on

our target machine.

Once you have created your program and saved it in a file called decode2.c, generate its

assembly code version using the optimization level “g” (–Og) and save it in a file called

decode2.s.

Include the content of both files decode2.c and decode2.s in your assignment

Assignment_3.pdf document. Label them well.

You do not have to electronically submit your files decode2.c and decode2.s on

CourSys. However, your program must be functionally correct (i.e., it must compile,

execute properly and solve this problem).

