
1

CMPT 295
Unit - Instruction Set Architecture

Lecture 24 – MIPS

I do not like computer jokes …

not one bit!

Last Lecture

 Assembler (part of the compilation process):

 Transforms assembly code (movl %edi, %eax) into machine code
(0xf889 -> 1111100010001001)

 Instruction Set Architecture (ISA)

A formal specification (or agreement) of …

Registers and memory model, set of instructions (assembly-machine)

Conventions, model of computation

etc...

 Design principles when creating instruction set (IS)

1. Each instruction must have an unambiguous encoding

2. Functionally complete (Turing complete)

3. Machine instruction format: 1) as few of them as possible 2) of the
same length 3) fields that have the same purpose positioned in the
same location in the format

 Types of instruction sets: CISC and RISC
2

 Instruction Set Architecture (ISA)

 Definition of ISA

 Instruction Set design

 Design guidelines

 Example of an instruction set: MIPS

Create our own instruction sets

 ISA evaluation

 Implementation of a microprocessor (CPU) based on an ISA

 Execution of machine instructions (datapath)

 Intro to logic design + Combinational logic + Sequential logic circuit

 Sequential execution of machine instructions

 Pipelined execution of machine instructions + Hazards

Today’s Menu

3

4

Example of another ISA: MIPS

 Registers and Memory model

 # of registers -> 32 registers (each register is 32 bit wide)

Word size -> 32 bits

Memory size -> 2m x n

 Byte-addressable memory
so address resolution ->

 Size of memory address (# of bits) ->

 So, there are _______ distinct addressable memory “chunks”

(or “locations”) and each of these addressable memory

“chunks” (or “locations”) has _____ bits

See Figure on next Slide

See Figure on next next Slide5

Example of an ISA: MIPS

Source: Page A-24 in Patterson and Hennessy

6

Source: Page 104 in Patterson and Hennessy

MIPS Memory Model

7

 Instruction set

MIPS assembly language notation

add a, b, c Meaning: a = b + c

3 operand assembly language

Requiring all instructions to have 3 operands would

keep the design of the microprocessor hardware

simple

Hardware for a variable number of operands is

more complicated

8

Example of an ISA: MIPS

Activity

 If we want to write an assembly program that sums
four variables b, c , d and e, how many MIPS add

instructions would we need?

 Solution:

9

 (Sub)set of instructions

 Memory addressing modes -> Direct (absolute),

base + displacement and Indirect

 Operand model ->

 Format/syntax of corresponding MIPS machine instructions?

 Length of machine instruction -> 32 bits (4 bytes)

 Size of opcode? Size of other fields? Order of operands?
10

MIPS assembly language

instructions

Semantic (i.e., Meaning)

lw $s1, 20($s2) $s1 = M[$s2 + 20]

sw $s1, 20($s2) M[$s2 + 20] = $s1

add $s1, $s2, $s3 $s1 = $s2 + $s3

sub $s1, $s2, $s3 $s1 = $s2 - $s3

beq $s1, $s2, 25 if ($s1 == $s2) go to PC + 4 + 100

j 2500 go to 10000 (2500 * 4 bytes)

jal 2500 $ra = PC + 4; go to 10000

Example of an ISA: MIPS

Format/syntax of

these bit patterns?

Corresponding MIPS

machine instructions

?

?

?

?

?

?

?

A closer look at MIPS’ add instruction

MIPS assembly language instruction:

add $s0, $al, $t7

Corresponding MIPS machine instruction:

0x00af8020

-> 0000 0000 1010 1111 1000 0000 0010 0000

-> 000000 00101 01111 10000 00000 100000

-> opcode rs rt rd shamt func

11

Format of

corresponding

machine

instruction

Corresponding

machine

instruction

MIPS machine instruction - fields

12

opcode rs rt rd shamt func

 opcode: operation of the instruction

 rs: first register source operand

 rt: second register source operand

 rd: register destination operand (contains

results of operation)

 shamt: shift amount

 func: function – often called function

code, which indicates the specific variant
of the operation in the opcode field

 6 bits

 5 bits

 5 bits

 5 bits

 5 bits

 6 bits

Total: 32 bits

Format of

R-type MIPS

instructions

 Function call conventions

 caller saved registers

 callee saved registers

13

Let’s examine an ISA: MIPS (3 of 3)

shamt

MIPS - Design guidelines

3. In terms of machine instruction format:

a. Create as few of them as possible

b. Have them all of the same length and same format!

c. If we have in different machine instruction formats, then position the
fields that have the same purpose in the same location in the format

 Can all MIPS machine instructions have the same length and same
format?

 For example: lw $s1, 20($s2)

 When designing its corresponding machine instruction …

Must specify source register using 5 bits -> OK!

Must specify destination register using 5 bits -> OK!

Must specify a constant using 5 bits -> Hum…

Value of constant limited to [0..25-1]

Often use to access array elements
so needs to be > 25 = 3214

Why?

opcode rs rt rd func

MIPS ISA designers compromise

 Keep all machine instructions format the same length

 Consequence -> different formats for different kinds of MIPS
instructions

 R-format for register

 I-format for immediate

 J-format for jump

 opcode indicates the format of the instruction

 This way, the hardware knows whether to treat the last half of the
instruction as 3 fields (R-format) or as 1 field (I-format)

 Also, position of fields with same purpose are in the same location
in the 3 formats 

15

opcode

6 bits

rs

5 bits

rt

5 bits

rd

5 bits

shamt

5 bits

func

6 bits

Address/immediate

16 bits

opcode

6 bits

rs

5 bits

rt

5 bits

Target address

26 bits

opcode

6 bits

Carnegie Mellon

Summary

 Types of instruction sets: CISC and RISC

 Looked at an example of a RISC instruction set: MIPS

 Registers and Memory model

 (Sub)set of instructions (assembly + machine instructions)

 Function call conventions

 Model of computation

 MIPS design principles

1. Unambiguous binary encoding of instruction

2. IS functionally complete (“Turing complete”)

3. Machine instruction format -> only 3 of same length but of different format!

 R-format for register

 I-format for immediate

 J-format for jump

 Also, position of fields with same purpose are in the same location in the 3
formats 16

 Instruction Set Architecture (ISA)

 Definition of ISA

 Instruction Set design

 Design guidelines

 Example of an instruction set: MIPS

Create our own instruction sets

 ISA evaluation

 Implementation of a microprocessor (CPU) based on an ISA

 Execution of machine instructions (datapath)

 Intro to logic design + Combinational logic + Sequential logic circuit

 Sequential execution of machine instructions

 Pipelined execution of machine instructions + Hazards

Next lecture

17

