
1

CMPT 295
Unit - Machine-Level Programming

Lecture 13 – Assembly language – Program Control – cmovX

Iterative Statements – Loops

Carnegie Mellon

Last Lecture

 In C, we can change the execution flow of a program

1. Conditionaly

 Conditional statements: if/else, switch

 Iterative statements: loops

2. Unconditionally

 Functions calls

 In x86-64 assembly, we can also change the execution flow of a program

 cmp* instruction (compare)

 jX instructions (jump)

 call and ret instructions

2

Today’s Menu

 Introduction

C program -> assembly code -> machine level code

 Assembly language basics: data, move operation

Memory addressing modes

 Operation leaq and Arithmetic & logical operations

 Conditional Statement – Condition Code + cmovX

 Loops

 Function call – Stack

 Array

 Buffer Overflow

 Floating-point operations
3

In Assembly: # x in %edi, y in %esi, result in %eax

max:

movl %edi, %eax # result = x

cmpl %edi, %esi # if y <= x then

jle endif # return

movl %esi, %eax # result = y

endif:

ret

Homework: int max(int x, int y)

In C:

int max(int x, int y) {

int result = x;

if (y > x)

result = y;

return result;

}

version 1 – with jX instruction

4

We branch (jump) when the condition (y > x) is false, i.e., when (y <= x)

-> This technique is called “coding the false condition first”

or ”taking care of …”

Conditional move instruction cmovX

 Example: cmovle Src, Dest

What C code looks like

when using conditional

operator:
result = test ? val2 : val1;

return result;

result = val1;

if (test) result = val2;

return result;

What logic of assembly

code looks like when using
cmovX (expressed in C):

in assembly:

x in %edi, result in %eax

abs:

movl %edi, %eax # result = x

negl %edi # x = -x

cmpl $0, %eax # if x < 0 then

cmovl %edi, %eax # result = -x

ret

in C:

int abs(int x){

if (x < 0)

x = -x;

return x;

}

alternative: int abs(int x)

5

Advantage of conditional move cmovX

Note about branching:

Branches are very disruptive to instruction flow through

microprocessor CPU pipelines

However, since conditional moves (cmovX) do not

require control transfer (no branching/jumping required),

they are less disruptive

So, gcc tries to use them, but only when safe

6

 In both values
(aVal and anotherVal) are computed so their
computation must be “safe”

 Example of unsafe computations:

1. Expensive computations

Only makes sense when computations are very simple

2. Risky computations

Only makes sense when computations do not crash the
application

3. Computations with side effects

Only makes sense when computations do not have side effects

val = Test(x) ? Hard1(x) : Hard2(x);

val = p ? *p : 0;

val = x > 0 ? x*=7 : x+=3;

What do we mean by “safe”?

result = test ? aVal : anotherVal;

7

Homework:
Example: alternate int max(int x, int y)

In C:

int max(int x, int y) {

int result = x;

if (y > x)

result = y;

return result;

}

In Assembly: # x in %edi, y in %esi, result in %eax

max:

movl %edi, %eax # result = x

cmpl %edi, %esi # if y > x then

cmovg %esi, %eax # result = y

ret

version 2 – with cmovX instruction

8

While loop – “coding the false condition first”

in assembly:

loop:

endloop:

ret

in C:

while (x < y) {

// stmts

}

return;

loop:

if cond false

goto done:

stmts

goto loop:

done:

Loop Pattern 1

int x and int y are arguments to function

9

goto test:

loop:

stmts

test:

if cond true

goto loop:

done:

While loop – “jump-to-middle”

in C:

while (x < y) {

// stmts

}

return;

Loop Pattern 2

in assembly:

loop:

stmts

test:

ret

int x and int y are arguments to function

10

goto test:

loop:

stmts

test:

if cond true

goto loop:

done:

Do While loop – “jump-to-middle”

in C:

do {

stmts

} while (x < y);

return;

Loop Pattern 2

in assembly:

loop:

stmts

test:

ret

int x and int y are arguments to function

11

For loop

In C:

for (i = 0; i < n; i++){

// stmts

}

return;

In Assembly:

xorl %ecx, %ecx # initialization

loop: # %ecx (i) <- 0

cmpl %edi, %ecx # while i < n true

testing

jge endloop # jump when i >= n

false condition

stmts

incl %ecx # i++ increment

jmp loop # loop again

endloop:

ret

i = 0; // initialization

while (i < n) { //

// stmts

i++; // increment

}

return;

12

initialization

condition

testing

increment

condition

testing

Carnegie Mellon

Summary

 In x86-64 assembly, there are no conditional statements, however,
we can alter the execution flow of a program by using …

 cmp* instruction (compare)

 jX instructions (jump)

 call and ret instructions

 cmovX instructions -> conditional move

 In x86-64 assembly, there are no iterative statements, however, we
can alter the execution flow of a program by using …

 cmp* instruction

 jX instructions (jump)

 CPU uses these condition codes to decide whether a …

 jX instruction (conditional jump) is to be exectued or a

 cmovX instruction (conditional move) is to be exectued

 2 loop patterns:

 “coding the false condition first” -> while loops (hence for loops)

 “jump-in-middle” -> while, do-while (hence for loops)
13

cmp* and test*

instructions set

condition codes

Compiler can

produce different

instruction

combinations when

assembling the

same C code.

Next Lecture

 Introduction

 C program -> assembly code -> machine level code

 Assembly language basics: data, move operation

 Memory addressing modes

 Operation leaq and Arithmetic & logical operations

 Conditional Statement – Condition Code + cmovX

 Loops

 Function call – Stack

 Overview of Function Call

 Memory Layout and Stack - x86-64 instructions and registers

 Passing control

 Passing data – Calling Conventions

 Managing local data

 Array

 Buffer Overflow

 Floating-point operations14

