
1

CMPT 295
Unit - Machine-Level Programming

Lecture 13 – Assembly language – Program Control – cmovX

Iterative Statements – Loops

Carnegie Mellon

Last Lecture

 In C, we can change the execution flow of a program

1. Conditionaly

 Conditional statements: if/else, switch

 Iterative statements: loops

2. Unconditionally

 Functions calls

 In x86-64 assembly, we can also change the execution flow of a program

 cmp* instruction (compare)

 jX instructions (jump)

 call and ret instructions

2

Today’s Menu

 Introduction

C program -> assembly code -> machine level code

 Assembly language basics: data, move operation

Memory addressing modes

 Operation leaq and Arithmetic & logical operations

 Conditional Statement – Condition Code + cmovX

 Loops

 Function call – Stack

 Array

 Buffer Overflow

 Floating-point operations
3

In Assembly: # x in %edi, y in %esi, result in %eax

max:

movl %edi, %eax # result = x

cmpl %edi, %esi # if y <= x then

jle endif # return

movl %esi, %eax # result = y

endif:

ret

Homework: int max(int x, int y)

In C:

int max(int x, int y) {

int result = x;

if (y > x)

result = y;

return result;

}

version 1 – with jX instruction

4

We branch (jump) when the condition (y > x) is false, i.e., when (y <= x)

-> This technique is called “coding the false condition first”

or ”taking care of …”

Conditional move instruction cmovX

 Example: cmovle Src, Dest

What C code looks like

when using conditional

operator:
result = test ? val2 : val1;

return result;

result = val1;

if (test) result = val2;

return result;

What logic of assembly

code looks like when using
cmovX (expressed in C):

in assembly:

x in %edi, result in %eax

abs:

movl %edi, %eax # result = x

negl %edi # x = -x

cmpl $0, %eax # if x < 0 then

cmovl %edi, %eax # result = -x

ret

in C:

int abs(int x){

if (x < 0)

x = -x;

return x;

}

alternative: int abs(int x)

5

Advantage of conditional move cmovX

Note about branching:

Branches are very disruptive to instruction flow through

microprocessor CPU pipelines

However, since conditional moves (cmovX) do not

require control transfer (no branching/jumping required),

they are less disruptive

So, gcc tries to use them, but only when safe

6

 In both values
(aVal and anotherVal) are computed so their
computation must be “safe”

 Example of unsafe computations:

1. Expensive computations

Only makes sense when computations are very simple

2. Risky computations

Only makes sense when computations do not crash the
application

3. Computations with side effects

Only makes sense when computations do not have side effects

val = Test(x) ? Hard1(x) : Hard2(x);

val = p ? *p : 0;

val = x > 0 ? x*=7 : x+=3;

What do we mean by “safe”?

result = test ? aVal : anotherVal;

7

Homework:
Example: alternate int max(int x, int y)

In C:

int max(int x, int y) {

int result = x;

if (y > x)

result = y;

return result;

}

In Assembly: # x in %edi, y in %esi, result in %eax

max:

movl %edi, %eax # result = x

cmpl %edi, %esi # if y > x then

cmovg %esi, %eax # result = y

ret

version 2 – with cmovX instruction

8

While loop – “coding the false condition first”

in assembly:

loop:

endloop:

ret

in C:

while (x < y) {

// stmts

}

return;

loop:

if cond false

goto done:

stmts

goto loop:

done:

Loop Pattern 1

int x and int y are arguments to function

9

goto test:

loop:

stmts

test:

if cond true

goto loop:

done:

While loop – “jump-to-middle”

in C:

while (x < y) {

// stmts

}

return;

Loop Pattern 2

in assembly:

loop:

stmts

test:

ret

int x and int y are arguments to function

10

goto test:

loop:

stmts

test:

if cond true

goto loop:

done:

Do While loop – “jump-to-middle”

in C:

do {

stmts

} while (x < y);

return;

Loop Pattern 2

in assembly:

loop:

stmts

test:

ret

int x and int y are arguments to function

11

For loop

In C:

for (i = 0; i < n; i++){

// stmts

}

return;

In Assembly:

xorl %ecx, %ecx # initialization

loop: # %ecx (i) <- 0

cmpl %edi, %ecx # while i < n true

testing

jge endloop # jump when i >= n

false condition

stmts

incl %ecx # i++ increment

jmp loop # loop again

endloop:

ret

i = 0; // initialization

while (i < n) { //

// stmts

i++; // increment

}

return;

12

initialization

condition

testing

increment

condition

testing

Carnegie Mellon

Summary

 In x86-64 assembly, there are no conditional statements, however,
we can alter the execution flow of a program by using …

 cmp* instruction (compare)

 jX instructions (jump)

 call and ret instructions

 cmovX instructions -> conditional move

 In x86-64 assembly, there are no iterative statements, however, we
can alter the execution flow of a program by using …

 cmp* instruction

 jX instructions (jump)

 CPU uses these condition codes to decide whether a …

 jX instruction (conditional jump) is to be exectued or a

 cmovX instruction (conditional move) is to be exectued

 2 loop patterns:

 “coding the false condition first” -> while loops (hence for loops)

 “jump-in-middle” -> while, do-while (hence for loops)
13

cmp* and test*

instructions set

condition codes

Compiler can

produce different

instruction

combinations when

assembling the

same C code.

Next Lecture

 Introduction

 C program -> assembly code -> machine level code

 Assembly language basics: data, move operation

 Memory addressing modes

 Operation leaq and Arithmetic & logical operations

 Conditional Statement – Condition Code + cmovX

 Loops

 Function call – Stack

 Overview of Function Call

 Memory Layout and Stack - x86-64 instructions and registers

 Passing control

 Passing data – Calling Conventions

 Managing local data

 Array

 Buffer Overflow

 Floating-point operations14

