
1

CMPT 295
Unit - Machine-Level Programming

Lecture 10 – Assembly language basics: leaq instruction,

memory addressing modes and

arithmetic & logical operations

Last Lecture

 As x86-64 assembly s/w dev., we now get to see more of the microprocessor

(CPU) state: PC, registers, condition codes

 x86-64 assembly language – Data

 16 integer registers of 1, 2, 4 or 8 bytes + memory address of 8 bytes

 Floating point registers of 4 or 8 bytes

 No aggregate types such as arrays or structures

 x86-64 assembly language – Instructions

 mov* instruction family

From register to register

From memory to register

From register to memory

 Memory addressing modes

 Cannot do memory-memory transfer with a single mov* instruction2

Why cannot do memory-memory transfer
with a single mov* instruction?

 No x86-64 assembly instructions that take 2 memory addresses as
operands

 Such instruction would

 Makes for very long machine instructions

 Require more complex decoder unit (on microprocessor)
in other words, require more complex microprocessor datapath

 Memory only has one data bus and one address bus

No appetite for instruction set architects to create such instructions

 Registers very fast and can easily be used for such transfer

 More info here:

https://stackoverflow.com/questions/33794169/why-isnt-movl-from-
memory-to-memory-allowed

3

https://stackoverflow.com/questions/33794169/why-isnt-movl-from-memory-to-memory-allowed

Last Lecture

 Requirement: When reading/writing assembly code …

4

swap:

xp -> %rdi, yp -> %rsi

movq (%rdi), %rax # L1 = *xp

movq (%rsi), %rdx # L2 = *yp

movq %rdx, (%rdi) # *xp = L2

movq %rax, (%rsi) # *yp = L1

ret

… add a comment

at the top of your

function in your

assembly code

describing the

parameter-to-

register mapping

Comment each

of your assembly

language

instruction by

explaining what it

does using

corresponding C

statement or

pseudocode

Today’s Menu

5

 Introduction

C program -> assembly code -> machine level code

 Assembly language basics: data, move operation

Memory addressing modes

 Operation leaq and Arithmetic & logical operations

 Conditional Statement – Condition Code + cmov*

 Loops

 Function call – Stack

 Array

 Buffer Overflow

 Floating-point operations

Various types of operands to x86-64

instructions

1. Integer value as operand directly in an instruction

 This operand is called immediate

Operand syntax: Imm

Examples: movq $0x4,%rax and movb $-17,%al

2. Registers as operands in an instruction

Operand value: R[ra]

Operand syntax: %ra

Example: movq %rax,%rdx

3. Memory address – using various memory addressing
modes as operands in an instruction

name of particular register

6

These instructions

copy immediate

value to registerSo far, this is

the type of

operands what

we have seen!

This instruction

copies the

value of one

register into

another register

Memory addressing modes

We access memory in an x86-64 instruction by expressing a

memory address through various memory addressing modes

1. Absolute memory addressing mode

Use memory address as operand directly in instruction

The operand is also called immediate

Operand syntax: Imm

Effect: M[Imm]

Example: call plus

2. Indirect memory addressing mode
7

plus refers to the

memory address

of the first byte of

the first instruction

of the function
called plus (see

Demo)

2. Indirect memory addressing mode

When a register contains an address

Similar to a pointer in C

 To access the data at the address contained in the
register, we use parentheses (…)

General Syntax: (rb)

 Effect: M[R[rb]]

8

2. Indirect memory addressing mode

memory to registerregister to register

9

Carnegie Mellon

leaq - Load effective address instruction

 Often used for address computations and general arithmetic

computations

 Syntax: leaq Source, Destination

 Example:

1. Computing addresses if %rax <- 0x0000000000000008

and %rcx <- 16

leaq (%rax, %rcx), %rdx

2. Computing arithmetic expressions of the form x + k*y where k
∈ {1,2,4,8} if %rdi <- variable a

leaq (%rdi, %rdi, 2), %rax

 Operand Destination is a register

 Operand Source is a memory addressing mode expression

x ky Once executed,

rax will contain 3a

C code:

return a*3;

Once executed,

rdx will contain 0x18

leaq has the form of

an instruction that

reads from memory to

a register (because of

the parentheses),

however it ***does

not*** reference

memory at all!

10

3. “Base + displacement”
memory addressing mode

General Syntax: Imm(rb)

 Effect: M[Imm + R[rb]]

 Examples: movq %rax, -8(%rsp)

leaq 7(%rdi), %rax

Careful here!

When dealing with leaq, the effect is Imm + R[rb]

not M[Imm + R[rb]]

11

4. Indexed memory addressing mode

1. General Syntax: (rb,ri)

 Effect: M[R[rb] + R[ri]]

 Example: movb (%rdi, %rcx), %al

2. General Syntax: Imm(rb,ri)

 Effect: M[Imm + R[rb] + R[ri]]

 Example: movw 0xA(%rdi, %rcx), %r11w

Careful here!

 When dealing with leaq, the effect is

1. R[rb] + R[ri] ***not*** M[R[rb] + R[ri]]

2. Imm + R[rb] + R[ri] ***not*** M[Imm + R[rb] + R[ri]]

12

5. Scaled indexed memory addressing mode

1. General Syntax: (,ri,s) Effect: M[R[ri] * s]

Example: (, %rdi, 2)

2. General Syntax: Imm(,ri,s) Effect: M[Imm + R[ri] * s]

Example: 3(, %rcx, 8)

3. General Syntax: (rb,ri,s) Effect: M[R[rb] + R[ri] * s]

Example: (%rdi, %rsi, 4)

4. General Syntax: Imm(rb,ri,s) Effect: M[Imm + R[rb] + R[ri] * s]

Example: 8(%rdi, %rsi, 4)

Again, careful here!

 When dealing with leaq, the effect is ***not*** to reference memory at all!
13

Summary - Memory addressing modes

1. Absolute

2. Indirect

3. “Base + displacement”

4. 2 indexed

5. 4 scaled indexed

See Table of x86-64 Addressing Modes

on Resources web page of our course web site

General Syntax: Imm(rb, ri, s)

Effect: M[Imm + R[rb]+ R[ri] * s]

14

We access memory in an x86-64 instruction by expressing a

memory address through various memory addressing modes

http://www.cs.sfu.ca/CourseCentral/295/alavergn/Resources/Table%20of%20x86-64%20Addressing%20Modes.html

Carnegie Mellon

Let’s try it!

Expression Address Computation Address

8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

0x80(%rdx, 2)

0x80(,%rdx, 3)

%rdx 0xf000

%rcx 0x0100

15

Carnegie Mellon

Two-Operand Arithmetic Instructions

Syntax Meaning Examples in C

add* Src, Dest Dest ← Dest + Src addq %rax, %rcx x += y

sub* Src, Dest Dest ← Dest – Src subq %rax, %rcx x -= y

imul* Src, Dest Dest ← Dest * Src imulq $16,(%rax,%rdx,8)

x *= y

 “destination” and “first operand” are the same

 “2 operand” assembly language (machine)

mem ← mem OP mem usually not supported

 2 assembly code formats: ATT and Intel format (see Aside in Section 3.2 P. 177)

We are using the ATT format

 Both order the operands of their instructions differently - Watch out!

16

* -> Size designator

q -> long 64

l -> int 32

w -> short 16

b -> char 8

Carnegie Mellon

Two-Operand Logical Instructions

Syntax Meaning Examples

and* Src, Dest Dest ← Dest & Src andl $252645135, %edi

or* Src, Dest Dest ← Dest | Src orq %rsi, %rdi

xor* Src, Dest Dest ← Dest ^ Src xorq %rsi, %rdi

 xorq special purpose:

 xorq %rax, %rax <- zeroes register %rax

 movq $0, %rax <- also zeroes register %rax

 x86-64 convention:

 Any instruction updating the lower 4 bytes will cause the higher-order

bytes to be set to 0

 xorl %eax, %eax and movl $0, %eax <- also zeroes register %rax
17

* -> Size designator

q -> long 64

l -> int 32

w -> short 16

b -> char 8

Carnegie Mellon

Two-Operand Shift Instructions

Syntax Meaning Examples

sal* Src, Dest Dest ← Dest << Src salq $4, %rax

 Left shift - also called shlq: filling Dest with 0, from the right

sar* Src, Dest Dest ← Dest >> Src sarl %cl, %rax

 Right arithmetic Shift: filling Dest with sign bit, from the left

shr* Src, Dest Dest ← Dest >> Src shrq $2, %r8

 Right logical Shift: filling Dest with 0, from the left
18

* -> Size designator

q -> long 64

l -> int 32

w -> short 16

b -> char 8

Carnegie Mellon

One-Operand Arithmetic Instructions

Syntax Meaning Examples

inc* Dest Dest ← Dest + 1 incq (%rsp)

dec* Dest Dest ← Dest 1 decq %rsi

neg* Dest Dest ← Dest negl %eax

not* Dest Dest ← ~Dest notq %rdi

19

* -> Size designator

q -> long 64

l -> int 32

w -> short 16

b -> char 8

Summary

 leaq - load effective address instruction

 Various types of operands to x86-64 instructions

 Immediate (constant integral value)

Register (16 registers)

Memory address (various memory addressing modes)

General Syntax: Imm(rb, ri, s)

 Arithmetic & logical operations

Arithmetic instructions: add*, sub*, imul* inc*, dec*,

neg*, not*

Logical instructions: and*, or*, xor*

Shift instructions: sal*, sar*, shr*
20

Next lecture

Practice

and

DEMO!

21

 Introduction

C program -> assembly code -> machine level code

 Assembly language basics: data, move operation

Memory addressing modes

 Operation leaq and Arithmetic & logical operations

 Conditional Statement – Condition Code + cmov*

 Loops

 Function call – Stack

 Array

 Buffer Overflow

 Floating-point operations

