
1

CMPT 295
Unit - Machine-Level Programming

Lecture 9 – Assembly language basics: Data, move operation

Last Lecture

 Review: von Neumann architecture

 Data and code are both stored in memory during program execution

1. Question: How does our C program end up being represented as a

series of 0’s and 1’s (i.e., as machine code)?

 Compiler: C program -> assembly code -> machine level code

 gcc: 1) C preprocessor, 2) C compiler, 3) assembler, 4) linker

2. Question: How does our C program (once it is represented as a series of

0’s and 1’s) end up being stored in memory?

 When C program is executed (e.g. from our demo: ./ss 5 6)

3. Question: How does our C program (once it is represented as a series of

0’s and 1’s and it is stored in memory) end up being executed by the

microprocessor (CPU)?

CPU executes C program by looping through the fetch-execute cycle
2

Summary - Turning C into machine level code - gcc

sum_store.c
gcc -Og -S sum_store.i

OR gcc -Og –S sum_store.c
Preprocessed Source

text
C Preprocessor gcc –E sum_store.c > sum_store.i

text

C Compiler
sum_store.i

Assembler gcc –g –c main.s sum_store.ssum_store.s

sum_store.o

Linker gcc –o ss main.o sum_store.o

Executable
ss

text

binary

text

binary
optional

Disassembler

gdb/ddd debugger

Disassembled object file
text & binary

objdump –d ss

Loader ./ss 5 6

Compiles the C program into an assembly language program

Expands the header(s) found at the top of the C program by including their content into

this C program

Assembles the assembly language program into an object file (series of

0’s and 1’) which is a combination of machine language instructions,

data and info needed to place all of this properly into memory

Combines independently assembled machine

language programs with library routines into an

executable file

Loads machine code (from files) into proper memory

locations for execution by CPU

3

Today’s Menu

 Introduction

C program -> assembly code -> machine level code

 Assembly language basics: data, move operation

Memory addressing modes

 Operation leaq and Arithmetic & logical operations

 Conditional Statement – Condition Code + cmov*

 Loops

 Function call – Stack

 Array

 Buffer Overflow

 Floating-point operations
4

Programming in C versus in x86-64

assembly language

When programming in C, we can …

 Store/retrieve data into/from memory, i.e. variables

 Perform calculations on data

 e.g., arithmetic, logic, shift

 Transfer control: decide what part of the program to execute

next based on some condition

 e.g., if-else, loop, function call

When programming in assembly language, we can do the
same things, however …5

CPU Memory
Addresses

Data

InstructionsCondition
Codes

… with assembly language (and machine code), parts of

the microprocessor state are visible to assembly

programmers that normally are hidden from C programmers

 As assembly programmers, we now have access to …

Registers

PC

Programming in x86-64 assembly

6

Hum … Why are we learning assembly

language?

7

x86-64 Assembly Language - Data

 Integral numbers not stored in variables but in registers

Distinction between different integer size: 1, 2, 4 and 8 bytes

 Addresses not stored in pointer variables but in registers

Size: 8 bytes

 Treated as integral numbers

 Floating point numbers stored in different registers than

integral values

Distinction between different floating point numbers: 4 and 8

bytes

 No aggregate types such as arrays or structures
8

x86-64 Assembly Language – Data

 Storage locations in CPU

-> fastest storage

 16 registers are used

explicitly – must name them

in assembly code

 Some registers are used

implicitly

 e.g., PC, FLAGS

 Each register is 64 bits in size,

but we can refer to its:

 first byte LSB (8 bits),

 first 2 bytes (16 bits),

 first 4 bytes (32 bits),

 or to all of its 8 bytes (64 bits)

Integer Registers

9

About these integer registers!

If I want 8 bits worth of data, then I can use register names such as %al or %dil or %r12b

LSb 0MSb 63 31 715

10

About these integer registers!

If I want 16 bits worth of data, then I can use register names such as %ax or %di or %r12w

LSb 0MSb 63 31 715

11

About these integer registers!

If I want 32 bits worth of data, then I can use register names such as %eax or %edi or %r12d

LSb 0MSb 63 31 715

12

About these integer registers!

If I want 64 bits worth of data, then I can use register names such as %rax or %rdi or %r12

LSb 0MSb 63 31 715

13

About these integer registers!

If I want 64 bits worth of data, then I can use register names such as %rax or %rdi or %r12

If I want 32 bits worth of data, then I can use register names such as %eax or %edi or %r12d

If I want 16 bits worth of data, then I can use register names such as %ax or %di or %r12w

If I want 8 bits worth of data, then I can use register names such as %al or %dil or %r12b

LSb 0MSb 63 31 715

14

Remember that for all 16 registers …

LSb 0MSb 63

 %rax, %eax, %ax and %al all refer to the same register

 However…
 Each refer to a different section of this register

 %rax refers to all 64 bits of this register

 %eax refers to only 32 bits of this register

 the LS 32 bits of it -> bit 0 to bit 31

 %ax refers to only 16 bits of this register

 the LS 16 bits of it -> bit 0 to bit 15

 %al refers to only 8 bits of this register

 the LS 8 bits of it -> bit 0 to bit 7

Let’s use the

register associated

with the names
%rax, %eax, %ax

and %al

as an example:

31 715

15

x86-64 Assembly Language - Instructions

 “2 operand” assembly language

 x86-64 functionally complete -> i.e., it is “Turing complete”

 3 classes of instructions

1. Memory reference => Data transfer instructions

Transfer data between memory and registers

 Load data from memory into register

 Store register data into memory

Move data from one register to another

2. Arithmetic and logical => Data manipulation instructions

Perform calculations on register data

 e.g., arithmetic, logic, shift

3. Branch and jump => Program control instructions

Transfer control

 Unconditional jumps to/from functions

 Unconditional/conditional branches
16

Move data – mov*

1. Memory reference => Data transfer instructions

 Transfer data between memory and registers

 Syntax: mov* Source, Destination

 Example: movq %rdi, %rax

 Allowed moves:

 From register to register (Move)

 From memory to register (Load)

 From register to memory (Store)

Conditional move (cmov*)

 Same as above, but based on result of comparison

* -> Size designator

q -> long 64

l -> int 32

w -> short 16

b -> char 8

17

Demo – Swap Function

 Problem: Let’s swap the contents of two variables

 For now, we need to know that

Argument 1 of function swap(…) -> saved in %rdi

Argument 2 of function swap(…) -> saved in %rsi

18

19

void swap(long *xp, long *yp)

{

long L1 = *xp;

long L2 = *yp;

*xp = L2;

*yp = L1;

return;

}

swap:

movq (%rdi), %rax # L1 = *xp

movq (%rsi), %rdx # L2 = *yp

movq %rdx, (%rdi) # *xp = L2

movq %rax, (%rsi) # *yp = L1

ret

Demo – Swap Function

%rdi

%rsi

%rax

%rdx

Memory => Remember:

Compressed
view of memory

Registers

0x0020

0x0018

0x0010

0x0008

0x0000

Address

19

Cannot do memory-memory transfer with a single mov* instruction

mov*

Immediate

Register

Memory

Register

Memory

Register

Memory

Register

Source Dest in C

movq $0x4,%rax result = 0x4;

movq $-147,(%rax) *result = -147;

movq %rax,%rdx var1 = result;

movq %rax,(%rdx) *var1 = result;

movq (%rax),%rdx var1 = *result;

Src, Dest

Operand Combinations for mov*

Memory addressing modes

20

Homework

 Since we cannot do memory-memory transfer with a
single mov* instruction …

Can you write a little x86-64 assembly program that transfers
data stored at address 0x0000 to address 0x0018 ?

%rdi

%rsi

%rax

%rdx

MemoryRegisters

0x0020

0x0018

0x0010

0x0008

0x0000

Address

621

Summary

 As x86-64 assembly s/w dev., we now get to see more of the microprocessor

(CPU) state: PC, registers, condition codes

 x86-64 assembly language – Data

 16 integer registers of 1, 2, 4 or 8 bytes + memory address of 8 bytes

 Floating point registers of 4 or 8 bytes

 No aggregate types such as arrays or structures

 x86-64 assembly language – Instructions

 mov* instruction family

From register to register

From memory to register

From register to memory

 Memory addressing modes

 Cannot do memory-memory transfer with a single mov* instruction
22

Next Lecture

 Introduction

C program -> assembly code -> machine level code

 Assembly language basics: data, move operation

Memory addressing modes

 Operation leaq and Arithmetic & logical operations

 Conditional Statement – Condition Code + cmov*

 Loops

 Function call – Stack

 Array

 Buffer Overflow

 Floating-point operations
23

