
1

CMPT 295
Unit - Machine-Level Programming

Lecture 8 – Introduction

Compilation process: C -> assembly code -> machine level code

Carnegie Mellon

Last Lecture

 Most fractional decimal numbers cannot be exactly encoded using

IEEE floating point representation -> rounding

 Denormalized values

 Condition: exp = 0000…0

 0 <= denormalized values < 1, equidistant because all have same 2E

 Special values
 Condition: exp = 1111…1

Case 1: frac = 000…0 -> (infinity)

Case 2: frac ≠ 000…0 -> NaN

 Impact on C

 Conversion/casting, rounding

 Arithmetic operators:

 Behaviour not the same as for real arithmetic => violates associativity2

 Introduction

C program -> assembly code -> machine level code

 Assembly language basics: data, move operation

Operation leaq and Arithmetic & logical operations

Conditional Statement – Condition Code + cmovX

 Loops

 Function call – Stack

 Array

 Buffer Overflow

 Floating-point data & operations

Today’s Menu

3

What could these 32 bits represent?

What kind of information could they encode?

0 0 0 1 1 0 0 0 1 1 1 0 1 1 0 0 1 0 0 0 0 0 1 1 0 1 0 0 1 0 0 02

Answer:

 Aside from characters, integers or floating point numbers, etc…

 Review: We saw that all modern computers, designed based on the
von Neumann architecture, store their programs in memory

Data and instructions of our C program are in main memory together
(but in different locations)

 So, these bits could represent code, for example:

Assembly code: sub $0x18, %rsp

Machine code: 48 83 ec 18

4

C program in memory?

We have just spent a few lectures looking at how our data

can be represented as a series of 0’s and I’s, now …

1. Question: How does our C program end up being represented

as a series of 0’s and 1’s (i.e., as machine code)?

2. Question: Then, how does our C program (once it is

represented as a series of 0’s and 1’s) end up being stored in

memory?

3. Question: Then, how does our C program (once it is

represented as a series of 0’s and 1’s and it is stored in

memory) end up being executed by the microprocessor

(CPU)?
5

Demo – C program: sum_store.c

1. Question: How does our C program end up being

represented as a series of 0’s and 1’s (i.e., as machine

code)?

Let’s answer these questions with a demo

6

Turning C into machine code - gcc

sum_store.c

gcc -Og -S sum_store.i

OR gcc -Og –S sum_store.c
Preprocessed Source

text
C Preprocessor gcc –E sum_store.c > sum_store.i

text

C Compiler
sum_store.i

Assembler gcc –g –c main.s sum_store.ssum_store.s

sum_store.o

Linker
gcc –o ss main.o sum_store.o

Executable
ss

text

binary

text

binary

optional

Disassembler

gdb/ddd debugger

Disassembled object file
text & binary

objdump –d ss

Loader
./ss 5 6

7

Snapshot of compiled code

C code

Store sum
in memory designated by pointer dest

Assembly code

Move an 8-byte value to memory

Quad words in x86-64 parlance

Operands:

sum: Register %rax

dest: Register %rbx

*dest: Memory M[%rbx]

Machine code (0’s and 1’s)

3-byte instruction

Stored at address 0x40059e

*dest = sum;

movq %rax, (%rbx)

0x40059e: 48 89 03

8
Memory address

of this byte

Memory address

of this byte is
0x40059f

Memory address

of this byte is

Fetch-Execute Cycle

Question: How does our C program (once it is represented as a
series of 0’s and 1’s and it is stored in memory) end up being
executed by the microprocessor (CPU)?

 Answer: The microprocessor executes the machine code
version of our C program by executing the following simple loop:

DO FOREVER:

fetch next instruction from memory into CPU

update the program counter

decode the instruction

execute the instruction

PC: program

counter

Defn: register
containing

address of

instruction of ss
that is currently

executing

IR: instruction

register

Defn: register
containing

copy of

instruction of ss
that is currently

executing

Summary

 Review: von Neumann architecture

 Data and code are both stored in memory during program execution

1. Question: How does our C program end up being represented as a

series of 0’s and 1’s (i.e., as machine code)?

 Compiler: C program -> assembly code -> machine level code

 gcc: 1) C preprocessor, 2) C compiler, 3) assembler, 4) linker

2. Question: How does our C program (once it is represented as a series of

0’s and 1’s) end up being stored in memory?

 When C program is executed (e.g. from our demo: ./ss 5 6)

3. Question: How does our C program (once it is represented as a series of

0’s and 1’s and it is stored in memory) end up being executed by the

microprocessor (CPU)?

CPU executes C program by looping through the fetch-execute cycle
10

Next Lecture

11

 Introduction

C program -> assembly code -> machine level code

 Assembly language basics: data, move operation

Memory addressing modes

 Operation leaq and Arithmetic & logical operations

 Conditional Statement – Condition Code + cmov*

 Loops

 Function call – Stack

 Array

 Buffer Overflow

 Floating-point operations

