
1

CMPT 295
Unit - Data Representation

Lecture 7 – Representing fractional numbers in memory

– IEEE floating point representation, their arithmetic operations
and float in C

Last Lecture

 IEEE floating point representation

1. Normalized => exp ≠ 000…0 and exp ≠ 111…1

Single precision: bias = 127, exp: [1..254], E: [-126..127] => [10-38 … 1038]

Called “normalized” because binary numbers are normalized as part of

the conversion process

Effect: “We get the leading bit for free” => leading bit is always

assumed (never part of bit pattern)

Conversion: IEEE floating point number as encoding scheme

Fractional decimal number IEEE 754 (bit pattern)

 V = (–1)s M 2E

s is sign bit, M = 1 + frac, E = exp – bias, bias = 2k-1 – 1 and k is width of exp

2. Denormalized

3. Special cases
2

Today’s Menu

 Representing data in memory – Most of this is review

 “Under the Hood” - Von Neumann architecture

 Bits and bytes in memory

 How to diagram memory -> Used in this course and other references

 How to represent series of bits -> In binary, in hexadecimal (conversion)

 What kind of information (data) do series of bits represent -> Encoding scheme

 Order of bytes in memory -> Endian

 Bit manipulation – bitwise operations

 Boolean algebra + Shifting

 Representing integral numbers in memory

 Unsigned and signed

 Converting, expanding and truncating

 Arithmetic operations

 Representing real numbers in memory

 IEEE floating point representation

 Floating point in C – casting, rounding, addition, …
3

 How would 47.28 be encoded as IEEE floating point number?

1. Convert 47.28 to binary (using the positional notation R2B(X)) =>

47 = 1011112

 .28 = .01000111101011100001010001111010111000010100011110101110000101... 2

2. Normalize binary number:

101111.01000111101011100001010001111010111000010100011110101110000101... 2

=> 1.011110100011110101110000101000111101011100001010001111010111000... 2 x 25

IEEE floating point representation (single precision)

0 exp 0 1 1 1 1 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 0 0 0 0 1 0 1 0 …

.28 = .010001111010111000012

(x 20)

4

Rounding
 First, identify bit at rounding position

 Then select which kind of rounding we must perform:

1. Round up

 When the value of the bits to the right of the bit at rounding position is
> half the worth of the bit at rounding position

 We “round” up by adding 1 to the bit at rounding position

2. Round down

 When the value of the bits to the right of the bit at rounding position is
< half the worth of the bit at rounding position

 We “round” down by discarding the bits to the right of the bit at rounding
position

3. Round to “even number”

 When the value of the bits to the right of the bit at rounding position is exactly
half the worth of bit at rounding position, i.e., when these bits are 100…02

 We “round” such that the bit at the rounding position becomes 0

 If the bit at rounding position is 1 => then we “round to even number” by
“rounding up” i.e., by adding 1

 If the bit at rounding position is already 0 => then we “round to even
number” by “rounding down” i.e., by discarding the bits to the right of the
bit at rounding position

This selection is done
by looking at the bit
pattern around the
rounding position.

5

Rounding (and error)

 Example: rounding position -> round to nearest 1/4 (2 bits right

of binary point)

Value Binary Rounded Action Rounded Value

2 3/32 10.000112 10.002 (<1/2—down) 2

2 3/16 10.001102 10.012 (>1/2—up) 2 1/4

2 7/8 10.111002 11.002 (1/2—up to even) 3

2 5/8 10.101002 10.102 (1/2—down to even) 2 ½

 Explain value of a bit versus worth of a bit

 value of a bit

 worth of a bit

6

Back to IEEE floating point representation

Value Binary

2 3/32 10.000112

2 3/16 10.001102

2 7/8 10.111002

2 5/8 10.101002

Imagine this is our 23rd bit of the frac

=> rounding position

and this is our 24th bit

7

In the process of converting fractional decimal numbers

to IEEE floating point numbers (i.e., bit patterns in fixed-size

memory), we apply these same rounding rules …

Using the same numbers in our example:

Let’s practice converting and rounding!

 How would 346.62 be encoded as IEEE floating point

number (single precision) in memory?

 Also, can you compute the minimum value of the error introduced

by the rounding process since 346.62 can only be approximated

when encoded as an IEEE floating point representation

Homework

8

Carnegie Mellon

2. Denormalized values

Condition: exp = 00000000 (single precision)

 Denormalized Values: = +/− 0.frac × 2−126

Case 1: frac = 000…0 -> +0 and –0

Case 2: frac ≠ 000…0 -> numbers closest to 0.0 (equally spaced)

 Smallest:

V = (–1)s M 2E = 0.00000000000000000000001 x 2-126 = ~1.4 x 10-45

 Largest:

V = (–1)s M 2E = 0.11111111111111111111111 x 2-126 = ~ 1.18 x 10-38

0 00000000 00000000000000000000001

V = (–1)s M 2E

E = 1 – bias

bias = 2k-1 – 1

M = frac

0 00000000 11111111111111111111111

V = (–1)s M 2E

9

Carnegie Mellon

3. Special values

Condition: exp = 111…1

Case 1: frac = 000…0

Represents value (infinity)

Operation that overflows

Both positive and negative

E.g., 1.0/0.0 = −1.0/−0.0 = +,

1.0/−0.0 = −

Case 2: frac ≠ 000…0

Not-a-Number (NaN)

Represents case when no

numeric value can be

determined

e.g., sqrt(–1), − , 0

NaN propagates other NaN:

e.g., NaN + x = NaN

10

s exp frac

k bits n bits

+−

0

+Denorm +Normalized−Denorm−Normalized

+0
NaN NaN

Axis of all floating point values

12 3

If exp = 00…00

(all 0’s)

 Denormalized

If exp = 11…11

(all 1’s)

 Special cases

If exp ≠ 0 and exp ≠ 11…11

(exp range: [00000001 .. 11111110])

 Normalized

11

Carnegie Mellon

s exp frac E Value

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64 = 1/512

0 0000 010 -6 2/8*1/64 = 2/512

…

0 0000 110 -6 6/8*1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512

0 0001 000 -6 8/8*1/64 = 8/512

0 0001 001 -6 9/8*1/64 = 9/512

…

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16

0 0111 000 0 8/8*1 = 1

0 0111 001 0 9/8*1 = 9/8

0 0111 010 0 10/8*1 = 10/8

…

0 1110 110 7 14/8*128 = 224

0 1110 111 7 15/8*128 = 240

0 1111 000 n/a inf

What if floating point represented with 8 bits

closest to zero

largest denorm

smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized

numbers

Normalized

numbers

V = (–1)s M 2E

Denormalized:

E = 1 – bias

bias = 2k-1 – 1

M = frac

Normalized:

E = exp – bias

bias = 2k-1 – 1

M = 1+ frac

To get a feel
for all

possible
values

expressible
using IEEE like
conversion,

we use a
small w.

Here, instead
of w = 32, we

use w = 8.
This way, we

can
enumerate
all values.

12

Conversion in C

Casting between int, float, and double changes bit

pattern

 double/float → int

Truncates fractional part

int → float

Exact conversion, as long as frac (obtained when the int is

normalized) fits in 23 bits

Will round according to rounding rules

 int → double

Exact conversion, as long as frac (obtained when the int is

normalized) fits in 52 bits

Will round according to rounding rules13

Demo - C code

Conversion – Observe the change in bit pattern

int → float

float → int

 Addition

 Associativity – For floating point numbers f1, f2 and f3:

 Is it always true that (f1 + f2) + f3 = f1 + (f2 + f3)?

 Is it always true that (f1 * f2) * f3 = f1 * (f2 * f3)?

 Rounding – Effect of errors caused by rounding

14

Floating point arithmetic

 x +f y = Round(x + y)

 x f y = Round(x y)

 Basic idea:

First compute true result

Make it fit into desired precision

Possibly overflow if exponent too large

Possibly round to fit into frac

15

Carnegie Mellon

Summary

 Most fractional decimal numbers cannot be exactly encoded using

IEEE floating point representation -> rounding

 Denormalized values

 Condition: exp = 0000…0

 0 <= denormalized values < 1, equidistant because all have same 2E

 Special values
 Condition: exp = 1111…1

Case 1: frac = 000…0 -> (infinity)

Case 2: frac ≠ 000…0 -> NaN

 Impact on C

 Conversion/casting, rounding

 Arithmetic operators:

 Behaviour not the same as for real arithmetic => violates associativity16

 Introduction

C program -> assembly code -> machine level code

 Assembly language basics: data, move operation

Operation leaq and Arithmetic & logical operations

Conditional Statement – Condition Code + cmovX

 Loops

 Function call – Stack

 Array

 Buffer Overflow

 Floating-point data & operations

Next Lecture

17

