CMPT 295

Unit - Data Representation

Lecture 6 — Representing fractional numbers in memory
— |EEE floating point representation — cont’'d




Have you heard of that new band "1023 Megabytes"?

They're pretty good,
but they don't have a gig just yet.




Last Lecture

®» Representing integral numbers in memory

= Can encode a small range of values exactly (in1, 2, 4, 8 bytes)

» For example: We can represent the values -128 to 127 exactly in 1 byte using a
signed char inC

®» Representing fractional numbers in memory

1. Positional notation has some advantages, but also disadvantages
-> 50 not used!

2. |EEE floating point representation: can encode a much larger range of
values approximately (in 4 or 8 bytes) e.g. single precision: [10%..10%]

We interpret the
bit vector

fepreses] ) 222 = Overview of |EEE floating point representation

floating point = Precision options mmmmmmmmy S precsion: 32 bits
encoding) stored » V=(-1)sx M x 2F s [exp frac
o o 1 8-bits 23-bits
et Sl = s —>sign bit Double precision: 64 bits
this equation

= cxp encodes E (but |=E) oo =

3
\\ » frac encodes M (but = M) Lo b s2bit



Today's Menu

= Representing real numbers in memory
= |EEE floating point representation




Ao |EEE Floafing Point Representatfion
bit vector Three “kinds” of values

(expressed in IEEE
floating point

encoding) stored Numerical Form: V = (1) M 2F , ,
in memory using exp and frac interpreted as unsigned
this equation
s |exp frac
k bits N bits
2 1 3
If exp = 00...00 Ifexp#OE:nd exp#11...11 fexp=11...11
(all 0s) (exp range: [00000001 .. 11111110]) (all 17s)
= Denormalized = Normalized — Special cases
Equations: Equation:s:
E =1-bias and bias = 2! -1 E = exp - bias and bias = 2¢1 -1 Case 1: frac = 000...0
M = frac M =1+ frac Case 2: frac # 000...0

T\




IEEE floating point representation - normalized

Numerical Form: V = (=1)s M 2F

s [exp

frac

k bits

/

N bifs

fexpZOandexp #11...11
(exp range: [00000001 .. T1111110])

— Normalized

Equations:

E = exp - bias and bias = 2¢1 -]

M=1+frac

Why is E biased?

S

Using single precision as an example:

Why adding 1 to frac?

5 |exp frac

1 8 bifs 23 bits

exp range: [0000000T .. TTTTTT10] => [1,4 .. 254,¢]
If E is not biased (i.e., E = exp), then Erange: [1,, .. 254,,] Jso cannot express |

Vrange: [ 2! .. 224] = [ 24, ~2.89x107¢ ] __nhumbers<2® |
By biasing E (i.e., E = exp — bias ), then Erange: [1 - 127 .. 254 - 127/]
=[-126 .. 127] (since k = 8, bias =281 -1 =127)

Vrange: [27120.. 2171 = [ ~1.18x 1038 .. ~1.7x10%8 | <X so can now express very
small (and large) numbers ©

M

Because the number (or value) V is first normalized before it is converted.




Review: Scientific Notation and normalization

= From Wikipedia:

= Scientific notation is a way of expressing numbers that are too large or too small
to be conveniently written in decimal form (as they are long strings of digits).

®» |n scientific notation, nonzero numbers are written in the form|+/-M x 100

= |n normalized notation, the exponent n is chosen such that the absolute value of
the significand M is at least 1 (M = 1.0) but less than the base

M range for base 10 => [1.0..10.0 - €]
= Examples: Mrange forbase2 => [1.0..2.0-¢]

= A proton's mass is 0.0000000000000000000000000016726 kg -> 1.6726x107% kg
» Speed of light is 299,792,458 m/s -> 2.99792,458x108 m/s

SYHTCIX Of +/_ do . d_‘l d_2 d_3 ces d_n X b exp
normalized notation sign significand base exponent
x2° g <«
» let'stry:1.01011010.101,-> l.OIOIIOOIOl, x 2 w
movtno)tfe binaluy potitt makes 1Re. nwmban gmaller. ~.makesRe exponent laxger



Let’s try normalizing these fractional
binary numbers!

[alwalé%
1 101011010101"20- .olollolo ], xR°
. LY, 2 = . 2
2 o‘oooooooonm"?‘o— Lo, x 277
. 2 - . 2

3. 11000000111001: >

= |.100O0000OIIDOL, x 2




IEEE floating point representation
(single precision => k = 8 bits, n => 23 bits)

= Once V is hormalized, we apply the equations

=V =(-1)s M 28 =/1.01011010101}, x 28

»g=

»E = exp-Dbias where bias=21-1=2/-1=128-1=127
exp =E + bias =

» M =1 + frac >fkac =M-| =1.010lI0'0I0\ - |=01001010

S exp frac

0|10C00! 1| | O1011010101006600CO0000
k bits => 8 bits N bits => 23 bits

9 = bit vector in memorx\: \ )
in rexX %» Ox43ADB5000




Why adding 1 to frac g alwags

(or subtracting 1 from M)e

... %2

» Because the number (or value) V is first normalized before it

Is converted.

® As part of this normalization process, we fransform our binary

number such that its significand M is within the range
[1.0..2.0-¢]

» Remember:

Mrange forbase2 => [1.0..2.0-¢]

= This implies that M is always at least 1.0, so its integral part
always has the value |

= S0 since this bitis always part of M, IEEE 754 does not explicitly
save it in its bit pattern (i.e., in memory)

® |nstead, this bit is implied!



Why adding 1 to frac
(or subtracting 1 from M)e

We get the
leading bit
for free!l

1

oIt | rm UYsing IEEE 754 floating point
representation AR5 bt s notn vacded fromM

We have to add this 1 bit back when we convert from a bit

pattern (IEEE 754 floating point representation) back to a
fractional decimal

E le:V=(-1)* M2 =1.01011010101 x 28
xample (-1) Wx
M=1.01011010101 =>M-=1 +frac

This bit is implied hence not stored in the bit pattern produced
by the IEEE 754 floating point representation, and what we
store in the frac part of the |IEEE 754 bit patternis 01011010101

Implying this bit has the following effects:
. We save 1 bit when we convert (represent) a fractional
decimal number into a bit patter ’5




IEEE floating point representation (single precision)

» What if the 4 bytes starting at M[0x0000] represented a fractional

decimal number (encoded as an IEEE floating point number) -> value?
single precision

Numerical Form: V = (-1)s M 2F
Interpreted as Address M ]
unsigned Interpreted as unsigned size—1
11 10000111 | O1011010101000000000000
k = 8 bits n = 23 bits
w»exp70andexp# 11111111, -> normalized
» g = .
0x0003| 1100001 1
» E = exp-Dbias where bias=2%1-1=2"-1=128-1=127 0x0002] 10101101
_ _ 0x0001| 01010000
»E = - 127 = 0x0000] 00000000

» M=1+frac=1+ Little endian

-\/:




Let’s give it a go!

» \What if the 4 bytes starting at M[0x0000] represented a fractional

decimal number (encoded as an IEEE floating point number) -> value?
single precision

Numerical Form: V = (-1)s M 2F

{Jnrtgggprgjed - Interpreted as unsigned gf';j;e_si M[]
Ol 10001100 | 11011011011000000000000
k = 8 bits n =23 bits

»expF0andexp# 11111111, -> normalized

» S =

0x0003] 01000110

» E = exp-bios wherebias=2¢1-1=2"-1=128-1=127 . 0002l 07101101

» — _ — 0x0001] 10110000

E 127 0x0000| 0O0O0000O0OO0

»m  M=1+frac=1+ Little endian
13y =

Y\



IEEE floating point representation (single precision)

» How would 47.21875 be encoded as IEEE floating point numbere

1.

3.

Convert 47.28 to binary (using the positional notation R2B(X)) =>
=47 = 101111,

» 21875=.00111,

Normalize binary number:

101111.00111 =>1.0111100111, x 2° V=(-1)sM2E
Determine ...

s=0

E = exp-Dbias where bias=2<1-1=2"-1=128-1=127
exp=E+bias=5+ 127 =132 =>U2B(132) => 10000100
M=1+frac->frac=M-1 =>10111100111,-1=.0111100111,

0 110000100 O1111001110000000000000 5. 0x423CE000




IEEE floating point representation (single precision)

= How would 12345.75 be encoded as IEEE floating point number?
° | . .
1. Convert 12345.75 to binary single precision
» 12345 => J5=>

2. Normalize binary number: V=(-1)M2E

3. Determine ...

E = exp —bias where bias=2x1-1=2"-1=128-1=127
exp = E + bias =

M=1+frac->frac=M-1

5. Express in hex:



Summary

= |EEE Floating Point Representation
1. Denormalized
2. Special cases
3. Normalized => exp #000...0 andexp # 111...1
» Single precision: bias = 127, exp: [1..254], E: [-126..127] => [10-38 ... 1039]

» Called “normalized” because binary numbers are normalized

» Effect: “We get the leading bit for free”
» | eading bit is always assumed (never part of bit pattern)
» |[EEE floating point number as encoding scheme
= Fractional decimal number & |EEE 754 (bit pattern)
»V=(-1)sM2E

= s is sign bit, M =1 + frac, E = exp — bias, bias = 2" — 1 and k is width of exp




Next Lecture

= Representing real numbers in memory
= |EEE floating point representation
= Floating point in C — casting, rounding, addition, ...




