CMPT 295

Unit - Data Representation
Lecture 6 - Representing fractional numbers in memory

- IEEE floating point representation - cont'd

Have you heard of that new band "1023 Megabytes"?

They're pretty good, but they don't have a gig just yet.

Last Lecture

- Representing integral numbers in memory
- Can encode a small range of values exactly (in 1, 2, 4, 8 bytes)
- For example: We can represent the values - 128 to 127 exactly in 1 byte using a signed char in C
- Representing fractional numbers in memory

1. Positional notation has some advantages, but also disadvantages -> so not used!
2. IEEE floating point representation: can encode a much larger range of values approximately (in 4 or 8 bytes)
e.g., single precision: [10-38..1038]

We interpret the
bit vector
(expressed in IEEE
floating point encoding) stored in memory using this equation

- Overview of IEEE floating point representation
- Precision options \longrightarrow single precision: 32 bits
$-\mathrm{V}=(-1)^{\mathrm{s}} \times \mathbf{M} \times 2^{\mathrm{E}}$
- s -> sign bit
- exp encodes E (but != E)
- frac encodes M (but != M)

Double precision: 64 bits

s	exp	frac	
1	11 -bits	52 -bits	

Today's Menu

- Representing data in memory - Most of this is review
- "Under the Hood" - Von Neumann architecture
- Bits and bytes in memory
- How to diagram memory -> Used in this course and other references
- How to represent series of bits -> In binary, in hexadecimal (conversion)
- What kind of information (data) do series of bits represent -> Encoding scheme
- Order of bytes in memory -> Endian
- Bit manipulation - bitwise operations
- Boolean algebra + Shifting
- Representing integral numbers in memory
- Unsigned and signed
- Converting, expanding and truncating
- Arithmetic operations
- Representing real numbers in memory
- IEEE floating point representation
- Floating point in C - casting, rounding, addition,

We interpret the
bit vector
(expressed in IEEE
floating point
encoding) stored
in memory using
this equation

IEEE Floating Point Representation Three "kinds" of values

If $\exp =00 . . .00$
(all 0's)
\Rightarrow Denormalized
Equations:
$E=1$ - bias and bias $=2^{k-1}-1$
If $\exp \neq 0$ and $\exp \neq 11 \ldots 11$
$(\exp$ range: $[00000001 . .11111110]$)
\Rightarrow Normalized
Equations:
$E=\exp -$ bias and bias $=2^{k-1}-1$
$M=1+$ frac

```
If exp = 11...11
(all 1's)
=> Special cases
Case 1: frac = 000...0
Case 2: frac = 000...0
```


IEEE floating point representation - normalized

Review: Scientific Notation and normalization

- From Wikipedia:
- Scientific notation is a way of expressing numbers that are too large or too small to be conveniently written in decimal form (as they are long strings of digits).
- In scientific notation, nonzero numbers are written in the form $+/-M \times 10^{n}$
- In normalized notation, the exponent \boldsymbol{n} is chosen such that the absolute value of the significand M is at least $1(M=1.0)$ but less than the base
- Examples:

$$
\begin{array}{|l|}
\hline M \text { range for base } 10=>[1.0 \ldots 10.0-\varepsilon] \\
M \text { range for base } 2=>[1.0 . .2 .0-\varepsilon] \\
\hline
\end{array}
$$

- A proton's mass is $0.0000000000000000000000000016726 \mathrm{~kg}->1.6726 \times 10^{-27} \mathrm{~kg}$
- Speed of light is $299,792,458 \mathrm{~m} / \mathrm{s}$-> $2.99792,458 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Syntax of	$+/-\quad d_{0} \cdot d_{-1} d_{-2} d_{-3} \ldots d_{-n} \times b$ exp			
normalized notation	sign	significand	base	exponent

- Let's try: $101011010.101_{2}->1.01011010101_{2} \times 2^{8}$ moving the binary point makeo the number smaller \therefore makes the exponent laxgen

Let's try normalizing these fractional binary numbers!

$$
\text { 1. } 101011010101_{2}^{\times}=1.01011010101_{2} \times 2^{8}
$$ Mb E个

2. $0.000000001101_{2}^{\times 20}=1.1012 \times 2^{-9}$

M个 E!
3. $11000000111001_{2} 2^{2}=1.1000000111001 \times 2^{13}$

$$
M \downarrow E \uparrow
$$

IEEE floating point representation (single precision => $k=8$ bits, $n=>23$ bits)

- Once \vee is normalized, we apply the equations
- $V=(-1)^{5} M 2^{\mathrm{E}}=1.010110101012 \times 2^{8}$
- $s=0 \rightarrow+v e$
- E = exp - bias where bias $=2^{k-1}-1=2^{7}-1=128-1=127$
$\exp =\mathbf{E}+$ bias $=8+127=135_{10} \rightarrow 42 B\left(135_{10}\right)=10000111_{2}$
$-M=1+$ frac $\left.\Rightarrow f r a c=M-1 \Rightarrow 1.01011010101_{2}-I_{2}=0.010101010\right)_{2}$ frac

| 0 | 10000111 | 01011010101000000000000 |
| :--- | :--- | :--- | :--- |

k bits $=>8$ bits n bits $=>23$ bits menterve 23 bett

- bit vector in memory: 0100001 |loidnolplolpo00/000dp000
in hex: 0x43AD5000

Why adding 1 to fac

 (or subtracting 1 from M) 2 1... $\times 2$- Because the number (or value) \vee is first normalized before it is converted.
- As part of this normalization process, we transform our binary number such that its significand M is within the range [1.0.. $2.0-\varepsilon$]
- Remember: M range for base 2 => [1.0 .. 2.0- ε]
- This implies that \mathbf{M} is always at least. 1.0 , so its integral part always has the value 1
- So since this bit is always part of M, IEEE 754 does not explicitly save it in its bit pattern (ie., in memory)
- Instead, this bit is implied!

Why adding 1 to frac (or subtracting 1 from M)?

```
We get the
leading bit
for free!
```

Implying this bit has the following effects:

1. We save 1 bit when we convert (represent) a fractional decimal number into a bit pattern Using IEEE 754 floating point representation this bit is not in (subtracted from M)
2. We have to add this 1 bit back when we convert from a bit pattern (IEEE 754 floating point representation) back to a fractional decimal
Example: $V=(-1)^{s} M 2^{E}=1 . \underbrace{01011010101} \times 2^{8}$
$M=1.01011010101 \Rightarrow>M=1+$ frac
This bit is implied hence not stored in the bit pattern produced by the IEEE 754 floating point representation, and what we store in the frac part of the IEEE 754 bit pattern is 01011010101

IEEE floating point representation (single precision)

- What if the 4 bytes starting at $M[0 \times 0000]$ represented a fractional decimal number (encoded as an IEEE floating point number) -> value? single precision

$$
\text { Numerical Form: } \mathrm{V}=(-1)^{\mathrm{s}} \mathrm{M} 2^{\mathrm{E}}
$$

Interpreted as
unsigned Interpreted as unsigned

1	10000111	01011010101000000000000

$k=8$ bits
$n=23$ bits

- $\exp \neq 0$ and $\exp \neq 11111111_{2}$-> normalized
- $s=$
- $\mathbf{E}=\exp$ - bias where bias $=2^{k-1}-1=2^{7}-1=128-1=127$
- E = \qquad - 127 =
\qquad
- $M=1+$ frac $=1+$
- $V=$ \qquad

Let's give it a go!

- What if the 4 bytes starting at $\mathrm{M}[0 \times 0000]$ represented a fractional decimal number (encoded as an IEEE floating point number) -> value?

$$
k=8 \text { bits } \quad n=23 \text { bits }
$$

- $\exp \neq 0$ and $\exp \neq 11111111_{2}$-> normalized
- $\mathrm{s}=$
- $\mathbf{E}=\exp$ - bias where bias $=2^{k-1}-1=2^{7}-1=128-1=127$
- E = \qquad - $127=$

- $V=$ \qquad

IEEE floating point representation (single precision)

- How would 47.21875 be encoded as IEEE floating point number?

1. Convert 47.28 to binary (using the positional notation $R 2 B(X)$) =>

- 47 = 101111_{2}
- $.21875=.00111_{2}$

2. Normalize binary number:

$$
101111.00111=1.0111100111_{2} \times 2^{5} \quad V=(-1)^{\mathrm{s}} \mathrm{M} 2^{\mathrm{E}}
$$

3. Determine ...
$\mathrm{s}=0$
$\mathbf{E}=\exp -$ bias where bias $=2^{k-1}-1=2^{7}-1=128-1=127$
$\exp =\mathbf{E}+$ bias $=5+127=132=>$ U2B(132) $=>10000100$
$M=1+$ frac $->$ frac $=M-1=>1.0111100111_{2}-1=.0111100111_{2}$
4.

0	10000100	01111001110000000000000

IEEE floating point representation (single precision)

- How would 12345.75 be encoded as IEEE floating point number?

1. Convert 12345.75 to binary

- 12345 => .75 =>

2. Normalize binary number:

$$
V=(-1)^{s} M 2^{E}
$$

3. Determine ...
```
s=
E = exp - bias where bias=2 (k-1 - = 2 2 - 1 = 128-1 = 127
exp = E + bias =
M = 1 + frac -> frac = M - 1
```

4.

5. Express in hex:

Summary

- IEEE Floating Point Representation

1. Denormalized
2. Special cases
3. Normalized $=>\exp \neq 000 \ldots 0$ and $\exp \neq 111 \ldots 1$

- Single precision: bias = 127, exp: [1..254], E: [-126..127] => [10-38 .. 1038]
- Called "normalized" because binary numbers are normalized
- Effect: "We get the leading bit for free"
- Leading bit is always assumed (never part of bit pattern)
- IEEE floating point number as encoding scheme
- Fractional decimal number \Leftrightarrow IEEE 754 (bit pattern)
- $V=(-1)^{s} M 2^{E}$
- s is sign bit, $M=1+$ frac, $\mathbf{E}=\exp -$ bias, bias $=2^{k-1}-1$ and k is width of exp

Next Lecture

- Representing data in memory - Most of this is review
- "Under the Hood" - Von Neumann architecture
- Bits and bytes in memory
- How to diagram memory -> Used in this course and other references
- How to represent series of bits -> In binary, in hexadecimal (conversion)
- What kind of information (data) do series of bits represent -> Encoding scheme
- Order of bytes in memory -> Endian
- Bit manipulation - bitwise operations
- Boolean algebra + Shifting
- Representing integral numbers in memory
- Unsigned and signed
- Converting, expanding and truncating
- Arithmetic operations
- Representing real numbers in memory
- IEEE floating point representation
- Floating point in C - casting, rounding, addition, ...

