CMPT 295

Unit - Data Representation

Lecture 6 – Representing fractional numbers in memory – IEEE floating point representation – cont'd

Have you heard of that new band "1023 Megabytes"?

They're pretty good, but they don't have a gig just yet.

Last Lecture

- Representing integral numbers in memory
 - Can encode a small range of values exactly (in 1, 2, 4, 8 bytes)
 - For example: We can represent the values -128 to 127 exactly in 1 byte using a signed char in C
- Representing fractional numbers in memory
 - Positional notation has some advantages, but also disadvantages -> so not used!
 - 2. IEEE floating point representation: can encode a much larger range of values approximately (in 4 or 8 bytes) e.g., single precision: [10-38..1038]
- Overview of IEEE floating point representation
 - Precision options
 - \blacktriangleright \lor = (-1)^s × M × 2^E
 - s -> sign bit
 - exp encodes E (but != E)
 - frac encodes M (but != M)

Single precision: 32 bits		
s exp	frac	
1 8-bits	23-bits	
2 0 0.00		
Double precision	: 64 bits	
Double precision	frac	

We interpret the bit vector (expressed in IEEE floating point encoding) stored in memory using this equation

Today's Menu

- Representing data in memory Most of this is review
 - "Under the Hood" Von Neumann architecture
 - Bits and bytes in memory
 - How to diagram memory -> Used in this course and other references
 - How to represent series of bits -> In binary, in hexadecimal (conversion)
 - What kind of information (data) do series of bits represent -> Encoding scheme
 - Order of bytes in memory -> Endian
 - Bit manipulation bitwise operations
 - Boolean algebra + Shifting
- Representing integral numbers in memory
 - Unsigned and signed
 - Converting, expanding and truncating
 - Arithmetic operations

- Representing real numbers in memory
 - IEEE floating point representation
 - Floating point in C casting, rounding, addition, …

IEEE floating point representation - normalized

Numerical Form: $V = (-1)^{s} M 2^{E}$

Review: Scientific Notation and normalization

• From Wikipedia:

Examples:

7

- Scientific notation is a way of expressing numbers that are too large or too small to be conveniently written in decimal form (as they are long strings of digits).
- In scientific notation, nonzero numbers are written in the form $+/-M \times 10^{n}$
- In normalized notation, the exponent n is chosen such that the absolute value of the significand M is at least 1 (M = 1.0) but less than the base

M range for **base 10** => [1.0 .. 10.0 - ε]M range for **base 2** => [1.0 .. 2.0 - ε]

- Speed of light is 299,792,458 m/s -> 2.99792,458×10⁸ m/s

Syntax of $+/- d_0 \cdot d_{-1} d_{-2} d_{-3} \dots d_{-n} \times b^{exp}$ normalized notation sign significand base exponent Let's try: 101011010.101₂ $\cdot 2^{\circ}$ Note: the binary point makes the number smaller $\cdot makes the exponent larger$

Let's try normalizing these fractional binary numbers! 1. $101011010.101_2^{\times 2^{\circ}} = 1.0010001_2^{\times 2^{\circ}}$ MIET 2. $0,00000001101_2^{\times 2} = 1.101_2^{\times 2^{-9}}$ MTEL 3. $1,1000001,1100,12^{\times 2^{\circ}} = 1,1000001,100,12^{\times 2^{\circ}} = 1,1000001,100,12^{\times 2^{\circ}} = 1,1000000,1100,12^{\times 2^{\circ}} = 1,1000000,1100,12^{\times 2^{\circ}} = 1,1000000,1100,12^{\times 2^{\circ}} = 1,1000000,1100,12^{\times 2^{\circ}} = 1,100000,1100,12^{\times 2^{\circ}} = 1,10000,1100,12^{\times 2^{\circ}} = 1,10000,1100,12^{\times 2^{\circ}} = 1,10000,1100,12^{\circ}$ MLEÎ

IEEE floating point representation (single precision => k = 8 bits, n => 23 bits)

Once V is normalized, we apply the equations

 $V = (-1)^{s} M 2^{E} = 1.01011010101_{2} \times 2^{8}$

9

▶<u>s=</u>) → +ve **E** = exp - bias where bias = $2^{k-1} - 1 = 2^7 - 1 = 128 - 1 = 127$ $exp = E + bias = 8 + 127 = 135_{10} \rightarrow U2B(135_{10}) = 1000011_{2}$ 1 not part of bit frac exp n bits => 23 bits k bits => 8 bits we have bit vector in memory: 010 in hex: 0x43AD500

Why adding 1 to **frac** (or subtracting 1 from **M**)?

Because the number (or value) V is first normalized before it is converted.

Kalways

- As part of this normalization process, we transform our binary number such that its significand M is within the range
 [1.0.20 ε]
- **•** Remember: M range for **base 2** => $[1.0 .. 2.0 \varepsilon]$
- This implies that M is always at least 1.0, so its integral part always has the value 1
- So since this bit is always part of M, IEEE 754 does not explicitly save it in its bit pattern (i.e., in memory)
- Instead, this bit is implied!

Why adding 1 to **frac** (or subtracting 1 from **M**)?

We get the leading bit for free!

11

Implying this bit has the following effects:

- 1. We save 1 bit when we convert (represent) a fractional decimal number into a bit pattern using IEEE 754 floating point representation
 - 2. We have to add this 1 bit back when we convert from a bit pattern (IEEE 754 floating point representation) back to a fractional decimal

<u>Example:</u> $V = (-1)^{s} M 2^{E} = 1.01011010101 \times 2^{8}$

M = 1. 01011010101 => **M** = 1 + frac

This bit is implied hence not stored in the bit pattern produced by the IEEE 754 floating point representation, and what we store in the frac part of the IEEE 754 bit pattern is 01011010101

IEEE floating point representation (single precision)

What if the 4 bytes starting at M[0x0000] represented a fractional decimal number (encoded as an IEEE floating point number) -> value?

single precision Numerical Form: $V = (-1)^{s} M 2^{E}$ Interpreted as M[] Address Interpreted as unsigned unsigned size-1 10000111 0101101010100000000000 k = 8 bits n = 23 bits • $exp \neq 0$ and $exp \neq 11111111_2$ -> **normalized** ► S = 11000011 0x0003 **E** = exp – bias where bias = $2^{k-1} - 1 = 2^7 - 1 = 128 - 1 = 127$ 0x0002 010110 0x0001 01010000 ► E = -127 = 0x0000 0000000

Little endian

12

• M = 1 + frac = 1 +

Let's give it a go!

13

What if the 4 bytes starting at M[0x0000] represented a fractional decimal number (encoded as an IEEE floating point number) -> value?

IEEE floating point representation (single precision)

- How would 47.21875 be encoded as IEEE floating point number?
- 1. Convert 47.28 to binary (using the positional notation R2B(X)) =>
 - ► 47 = 101111₂
 - .21875 = .00111₂
- 2. Normalize binary number: 101111.00111 => $1.0111100111_2 \times 2^5$

$$\vee = (-1)^{\mathsf{s}} \mathsf{M} 2^{\mathsf{E}}$$

- 3. Determine ...
 - **s** = 0

14

E = exp – bias where bias = $2^{k-1} - 1 = 2^7 - 1 = 128 - 1 = 127$

exp = E + bias = 5 + 127 = 132 => U2B(132) => 10000100

 $M = 1 + \text{frac} \rightarrow \text{frac} = M - 1 = 1.0111100111_2 - 1 = .0111100111_2$

IEEE floating point representation (single precision)

- How would 12345.75 be encoded as IEEE floating point number?
- 1. Convert 12345.75 to binary
- 12345 => .75 =>
 2. Normalize binary number:
 3. Determine ...

$$\vee = (-1)^{\mathsf{s}} \mathsf{M} 2^{\mathsf{E}}$$

single precision

E = exp - bias where bias = $2^{k-1} - 1 = 2^7 - 1 = 128 - 1 = 127$

```
exp = E + bias =
```

```
M = 1 + \text{frac} \rightarrow \text{frac} = M - 1
```

4.

5. Express in hex:

Summary

- IEEE Floating Point Representation
 - 1. Denormalized
 - 2. Special cases
 - 3. Normalized => $exp \neq 000...0$ and $exp \neq 111...1$
 - Single precision: **bias** = 127, **exp**: [1..254], **E**: $[-126..127] => [10^{-38} ... 10^{38}]$
 - Called "normalized" because binary numbers are normalized
 - Effect: "We get the leading bit for free"
 - Leading bit is always assumed (never part of bit pattern)
- IEEE floating point number as encoding scheme
 - ► Fractional decimal number ⇔ IEEE 754 (bit pattern)
 - $\vee = (-1)^{s} M 2^{E}$
 - **s** is sign bit, M = 1 + frac, $E = \exp \text{bias}$, $\text{bias} = 2^{k-1} 1$ and k is width of exp

Next Lecture

- Representing data in memory Most of this is review
 - "Under the Hood" Von Neumann architecture
 - Bits and bytes in memory
 - How to diagram memory -> Used in this course and other references
 - How to represent series of bits -> In binary, in hexadecimal (conversion)
 - What kind of information (data) do series of bits represent -> Encoding scheme
 - Order of bytes in memory -> Endian
 - Bit manipulation bitwise operations
 - Boolean algebra + Shifting
- Representing integral numbers in memory
 - Unsigned and signed
 - Converting, expanding and truncating
 - Arithmetic operations

- Representing real numbers in memory
 - IEEE floating point representation
 - Floating point in C casting, rounding, addition, ...