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CMPT 295
Unit - Data Representation

Lecture 6 – Representing fractional numbers in memory 

– IEEE floating point representation – cont’d



Have you heard of that new band "1023 Megabytes"? 

They're pretty good, 

but they don't have a gig just yet.
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Last Lecture

 Representing integral numbers in memory

 Can encode a small range of values exactly  (in 1, 2, 4, 8 bytes)

 For example: We can represent the values -128 to 127 exactly in 1 byte using a 
signed char in C

 Representing fractional numbers in memory

1. Positional notation has some advantages, but also disadvantages 

-> so not used!

2. IEEE floating point representation: can encode a much larger range of 

values approximately (in 4 or 8 bytes)

 Overview of IEEE floating point representation
 Precision options

 V = (-1)s x M x 2E

 s –> sign bit

 exp encodes E (but != E)

 frac encodes M (but != M)

e.g., single precision: [10-38..1038]
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We interpret the 

bit vector 

(expressed in IEEE 

floating point 

encoding) stored 

in memory using 

this equation



Today’s Menu

 Representing data in memory – Most of this is review

 “Under the Hood” - Von Neumann architecture

 Bits and bytes in memory 

 How to diagram memory -> Used in this course and other references

 How to represent series of bits -> In binary, in hexadecimal (conversion)

 What kind of information (data) do series of bits represent -> Encoding scheme

 Order of bytes in memory -> Endian

 Bit manipulation – bitwise operations

 Boolean algebra + Shifting

 Representing integral numbers in memory

 Unsigned and signed

 Converting, expanding and truncating

 Arithmetic operations

 Representing real numbers in memory

 IEEE floating point representation

 Floating point in C – casting, rounding, addition, …
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IEEE Floating Point Representation

Three “kinds” of values

s exp frac

k bits                    n bits

If exp = 00…00 

(all 0’s)

 Denormalized

Equations:

E = 1 – bias and bias = 2k-1 – 1

M = frac

If exp = 11…11 

(all 1’s)

 Special cases

Case 1: frac = 000…0

Case 2: frac ≠ 000…0

exp and frac interpreted as unsigned

We interpret the 

bit vector 

(expressed in IEEE 

floating point 

encoding) stored 

in memory using 

this equation

If exp ≠ 0 and exp ≠ 11…11

(exp range: [00000001 .. 11111110])

 Normalized

Equations:

E =  exp – bias and bias = 2k-1 – 1 

M = 1 + frac

12 3

Numerical Form: V = (–1)s M 2E
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IEEE floating point representation - normalized

s exp frac

k bits                    n bits

If exp ≠ 0 and exp ≠ 11…11
(exp range: [00000001 .. 11111110])

 Normalized

Equations:
E =  exp – bias and bias = 2k-1 – 1 

M = 1 + frac

Numerical Form: V = (–1)s M 2E

Why is E biased? 
Using single precision as an example:

• exp range: [00000001 .. 11111110] => [110 .. 25410]

• If E is not biased (i.e., E = exp), then E range: [110 .. 25410]
• V range: [ 21 .. 2254] = [ 2 .. ~2.89x1076 ]

• By biasing E (i.e., E = exp – bias ), then E range: [1 – 127 .. 254 - 127]

= [-126 .. 127] (since k = 8, bias = 28-1 – 1 = 127)

• V range: [ 2-126 .. 2127] = [ ~1.18x 10-38 .. ~1.7x1038 ]

Why adding 1 to frac?
Because the number (or value) V is first normalized before it is converted.

so cannot express 
numbers < 2 

so can now express very 
small (and large) numbers 6



Review: Scientific Notation and normalization

 From Wikipedia: 

 Scientific notation is a way of expressing numbers that are too large or too small 
to be conveniently written in decimal form (as they are long strings of digits). 

 In scientific notation, nonzero numbers are written in the form +/-M × 10n

 In normalized notation, the exponent n is chosen such that the absolute value of 
the significand M is at least 1 (M = 1.0) but less than the base

 Examples:

 A proton's mass is 0.0000000000000000000000000016726 kg -> 1.6726×10−27 kg

 Speed of light is 299,792,458 m/s -> 2.99792,458×108 m/s

 Let’s try: 1 0 1 0 1 1 0 1 0 . 1 0 12  ->

Syntax of                                 +/−    d0 . d−1 d−2 d−3 … d−n × b exp

normalized notation             sign significand base exponent

M range for base 10 =>  [1.0 .. 10.0 – ε ]

M range for base 2   =>  [1.0 .. 2.0 – ε ]
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Let’s try normalizing these fractional 

binary numbers!

1. 101011010.1012

2. 0.0000000011012

3. 110000001110012
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IEEE floating point representation 

(single precision => k = 8 bits, n => 23 bits)

Once V is normalized, we apply the equations 

V = (–1)s M 2E   = 1.010110101012 x 28

 s = 

E =  exp – bias where bias = 2k-1 – 1 = 27 – 1 = 128 – 1 = 127

exp = E + bias = 

M = 1 + frac =

bit vector in memory:  

k bits => 8 bits       n bits => 23 bits

s exp frac
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Why adding 1 to frac

(or subtracting 1 from M)?

 Because the number (or value) V is first normalized before it 

is converted.

As part of this normalization process, we transform our binary 

number such that its significand M is within the range 
[1.0 .. 2.0 – ε ]

Remember: 

 This implies that M is always at least 1.0, so its integral part 

always has the value 1 

So since this bit is always part of M, IEEE 754 does not explicitly 

save it in its bit pattern (i.e., in memory)

 Instead, this bit is implied!

M range for base 2   =>  [1.0 .. 2.0 – ε ]
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Why adding 1 to frac

(or subtracting 1 from M)?

Implying this bit has the following effects:

1. We save 1 bit when we convert (represent) a fractional 
decimal number into a bit pattern using IEEE 754 floating point 
representation

2. We have to add this 1 bit back when we convert from a bit 
pattern (IEEE 754 floating point representation) back to a 
fractional decimal

Example: V = (–1)s M 2E   = 1.01011010101 x 28

M = 1. 01011010101   => M = 1 + frac

This bit is implied hence not stored in the bit pattern produced 
by the IEEE 754 floating point representation, and what we 
store in the frac part of the IEEE 754 bit pattern is 0101101010111

We get the 

leading bit 

for free!



What if the 4 bytes starting at M[0x0000] represented a fractional 

decimal number (encoded as an IEEE floating point number) -> value?

M[ ]

. 
. 
.

0x0001

0x0002

0x0003

0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0

1 0 1 0 1 1 0 1 

1 1 0 0 0 0 1 1

size−1

Address

0x0000

k = 8 bits                    n = 23 bits

Interpreted as

unsigned Interpreted as unsigned

Numerical Form: V = (–1)s M 2E

1 10000111      01011010101000000000000

single precision

IEEE floating point representation (single precision)

 exp ≠ 0 and exp ≠ 111111112 -> normalized

 s = 

 E =  exp – bias  where bias = 2k-1 – 1 = 27 – 1 = 128 – 1 = 127

 E = ____________ - 127 = 

 M = 1 + frac = 1 + ____________________________

 V = _______________________ 

Little endian
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k = 8 bits                    n = 23 bits

Interpreted as

unsigned Interpreted as unsigned

Numerical Form: V = (–1)s M 2E

0   10001100      11011011011000000000000

What if the 4 bytes starting at M[0x0000] represented a fractional 

decimal number (encoded as an IEEE floating point number) -> value?

E =  exp – bias = __________ - 127 = _________

and bias = 2k-1 – 1 = 28-1 – 1 = 127

M = 1 + frac = 1 + __________

single precision

 exp ≠ 0 and exp ≠ 111111112 -> normalized

 s = 

 E =  exp – bias  where bias = 2k-1 – 1 = 27 – 1 = 128 – 1 = 127

 E = ____________ - 127 = 

 M = 1 + frac = 1 + ____________________________

 V = _______________________ 

M[ ]

. 
. 
.

0x0001

0x0002

0x0003

0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0

0 1 1 0 1 1 0 1 

0 1 0 0 0 1 1 0

size−1

Address

0x0000

Let’s give it a go!

Little endian
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 How would 47.21875 be encoded as IEEE floating point number?

1. Convert 47.28 to binary (using the positional notation R2B(X)) =>

47 = 1011112

 .21875 = .001112

2. Normalize binary number:

101111.00111 => 1.01111001112 x 25

3. Determine …

s = 0

E =  exp – bias  where bias = 2k-1 – 1 = 27 – 1 = 128 – 1 = 127

exp = E + bias = 5 + 127 = 132 => U2B(132) => 10000100

M = 1 + frac -> frac = M - 1  => 1.01111001112  - 1 = .01111001112

IEEE floating point representation (single precision)

0 10000100 01111001110000000000000

V = (–1)s M 2E

4. 5.  0x423CE000 14



 How would 12345.75 be encoded as IEEE floating point number?

1. Convert 12345.75 to binary

 12345 =>                                  .75 =>

2. Normalize binary number:

3. Determine …

s = 

E =  exp – bias  where bias = 2k-1 – 1 = 27 – 1 = 128 – 1 = 127

exp = E + bias = 

M = 1 + frac -> frac = M - 1

4.

5. Express in hex: 

V = (–1)s M 2E

single precision

IEEE floating point representation (single precision)
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Summary

 IEEE Floating Point Representation

1. Denormalized

2. Special cases

3. Normalized => exp ≠ 000…0 and exp ≠ 111…1

Single precision: bias = 127, exp: [1..254], E: [-126..127] => [10-38 … 1038]

Called “normalized” because binary numbers are normalized

Effect: “We get the leading bit for free”

Leading bit is always assumed (never part of bit pattern) 

 IEEE floating point number as encoding scheme

 Fractional decimal number  IEEE 754 (bit pattern)

 V = (–1)s M 2E

s is sign bit, M = 1 + frac, E = exp – bias, bias = 2k-1 – 1  and k is width of exp16



Next Lecture

 Representing data in memory – Most of this is review

 “Under the Hood” - Von Neumann architecture

 Bits and bytes in memory 

 How to diagram memory -> Used in this course and other references

 How to represent series of bits -> In binary, in hexadecimal (conversion)

 What kind of information (data) do series of bits represent -> Encoding scheme

 Order of bytes in memory -> Endian

 Bit manipulation – bitwise operations

 Boolean algebra + Shifting

 Representing integral numbers in memory

 Unsigned and signed

 Converting, expanding and truncating

 Arithmetic operations

 Representing real numbers in memory

 IEEE floating point representation

 Floating point in C – casting, rounding, addition, …
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