CMPT 295

Unit - Data Representation

Lecture 5 – Representing fractional numbers in memory – IEEE floating point representation

Last Lecture

- Demo of size and sign conversion in C: code and results posted!
- Addition:

If w = 8

Actual Sum

121

121

True Sum

Positive Overflow

Negative Overflow

 $2^{w} - 1$

0

-2^{w-1} --135

-2w

2

2^{*w*−1}−1

- Unsigned/signed:
 - Behave the same way at the bit level
 - Interpretation of resulting bit vector (sum) may differ
 - Unsigned addition -> true sum may overflow its w bits in memory—
 - If so, then actual sum = $(x + y) \mod 2^{w}$ (equivalent to subtracting 2^w from true sum (x + y))
 - Signed addition -> true sum may overflow its w bits in memory
 - If so then ...
 - actual sum = $U2T_w[(x + y) \mod 2^w]$
 - true sum may be too +ve -> positive overflow OR too -ve -> negative overflow
- Subtraction
 - Becomes an addition where the 2nd operand is transformed into its additive inverse in two's complement
- Multiplication:
 - Unsigned: actual product = (x * y) mod 2^w
 - Signed: actual product = $U2T_w[(x * y) \mod 2^w]$
 - Can be replaced by additions and shifts

Conclusion: the same bit pattern is interpreted differently.

Conclusion: the same

bit pattern is interpreted

differently.

Questions

- Why are we learning this?
- What can we do in our program when we suspect that overflow may occur?

Demo – Looking at integer additions in C

What does the demo illustrate?

- Unsigned addition
 - Without overflow
 - With overflow
 - Can overflow be predicted?
- Signed addition

- Without overflow
- With positive overflow and negative overflow
- Can overflow be predicted?
- This demo (code and results) posted on our course web site

Today's Menu

- Representing data in memory Most of this is review
 - "Under the Hood" Von Neumann architecture
 - Bits and bytes in memory
 - How to diagram memory -> Used in this course and other references
 - How to represent series of bits -> In binary, in hexadecimal (conversion)
 - What kind of information (data) do series of bits represent -> Encoding scheme
 - Order of bytes in memory -> Endian
 - Bit manipulation bitwise operations
 - Boolean algebra + Shifting
- Representing integral numbers in memory
 - Unsigned and signed
 - Converting, expanding and truncating
 - Arithmetic operations
- Representing real numbers in memory
 - IEEE floating point representation
 - Floating point in C casting, rounding, addition, …

We'll illustrate what we covered today by having a demo!

R2B(X)

6

Converting a fractional decimal number into a binary number (bit vector)

- How would 346.625 (= 346 5/8) be represented as a binary number?
- Expanding the subtraction method we have already seen:

MSb $346.625 \rightarrow 346 - 256 = 90 \rightarrow 1 \times 2^8$ MSb $.625 - 0.5 = 0.125 \rightarrow 1 \times 2^{-1}$ 90 - 128 -> \otimes -> 0 x 2⁷ .125 - 0.25 -> \otimes -> 0 x 2⁻² $90 - 64 = 26 \rightarrow 1 \times 2^{6}$ $.125 - 0.125 = 0 \rightarrow 1 \times 2^{-3}$ $26 - 32 - > \otimes - > 0 \times 2^5$ Negative Powers $26 - 16 = 10 -> 1 \times 2^4$ of 2 $10 - 8 = 2 -> 1 \times 2^3$ $2^{-1} = 0.5$ $2 - 4 \rightarrow \otimes \rightarrow 0 \times 2^2$ $2^{-2} = 0.25$ $2 - 2 = 0 -> 1 \times 2^{1}$ $2^{-3} = 0.125$ $0 - 1 -> \otimes -> 0 \times 2^{0}$ LSb $2^{-4} = 0.0625$ LSb MSb LSb Binary representation is: 101011010.101₂ $2^{-5} = 0.03125$

B2R(X)

Converting a binary number into a fractional decimal number

How would 1011.101₂ be represented as a fractional decimal number?

Review: Fractional decimal numbers

Converting a binary number into a fractional decimal number

Positional notation: can this be a possible encoding scheme?

B2R(X)

Converting a binary number into a fractional decimal number

- How would 1011.101₂ be represented as a fractional decimal number?
- Using the positional encoding scheme:

 $1011.101_{2} \Rightarrow 1 \times 2^{3} + 1 \times 2^{1} + 1 \times 2^{0} = 11_{10}$ $1011_{2} \Rightarrow 1 \times 2^{-1} + 1 \times 2^{-3} = 0.5 + 0.125 = 0.625_{10}$ Result:
Negative Powers of 2 $2^{-1} = 0.5$ $2^{-2} = 0.25$ $2^{-3} = 0.125$ $2^{-4} = 0.0625$ $2^{-5} = 0.03125$ $2^{-6} = 0.015625$ $2^{-7} = 0.0078125$ $2^{-8} = 0.00390625$

Positional notation as encoding scheme?

- One way to answer this question is to investigate whether the encoding scheme allows for arithmetic operations
- Let's see: Using the positional notation as an encoding scheme produces fractional binary numbers that can be
 - added

11

- multiplied by 2 by shifting left
- divided by 2 by shifting right (unsigned)

Example: $1011.101_2 = 115/8 => 8+2+1+1/2+1/8$ Divide by 2: >> $101.1101_2 = 513/16 => 4+1+1/2+1/4+1/16$ Divide by 2: >> $10.11101_2 = 229/32 => 2+1/2+1/4+1/8+1/32$ $1011.101_2 = 115/8 => 8+2+1+1/2+1/8$ Multiply by 2: << $10111.01_2 = 231/4 => 16+4+2+1+1/4$

Positional notation as encoding scheme?

- Advantage (so far):
 - Straightforward arithmetic: can shift to multiply and divide, convert
- Disadvantage:

12

- Cannot encode all fractional numbers:
 - Can only represent numbers of the form $x/2^k$ (what about 1/5 or -34.8)
- Only one setting of binary point within the w bits -> this limits the range of possible values
 - What is this range?

Example -> w = 32 bits and binary point located at 16th bit :

Not so good anymore! ⊗

Representing fractional numbers in memory

- Here is another possible encoding scheme: IEEE floating point representation (IEEE Standard 754)
- Overview:
 - Binary Numerical Form: $V = (-1)^{s} M 2^{E}$
 - s Sign bit -> determines whether number is negative or positive
 - M Significand (or Mantissa) -> fractional part of number
 - **E** Exponent
 - Form of bit pattern:

s exp frac

- Most significant bit (MSb) s (similar to sign-magnitude encoding)
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

IEEE Floating Point Representation Precision options

Single precision: 32 bits ≈ 7 decimal digits, range:10±38

sexpfrac18 bits23 bits

In C:

Double precision: 64 bits ≈ 16 decimal digits, range:10±308

S	exp	Frac
1	11 bits	52 bits

IEEE Floating Point Representation Three "kinds" of values

Numerical Form: $V = (-1)^{s} M 2^{E}$

Review: Scientific Notation and normalization

- From Wikipedia:
 - Scientific notation is a way of expressing numbers that are too large or too small (usually would result a long string of digits) to be conveniently written in decimal form.
 - In scientific notation, nonzero numbers are written in the form $m \times 10^{n}$
 - In normalized notation, the exponent n is chosen so that the absolute value of the significand m is at least 1 but less than 10.
- Examples:

16

- Speed of light is 299,792,458 m/s -> 2.99792,458×10⁸ m/s

Syntax	+/- d	$d_0 \cdot d_{-1} d_{-2} d_{-3} \cdots d_{-n}$	n × b ^{exp}	
	sign	significand	base	exponent

Let's try: 101011010.101₂ ->

Summary

- Representing integral numbers (signed/unsigned) in memory:
 - Encode schemes allow for small range of values exactly
- Representing fractional numbers in memory:
 - 1. Positional notation (advantages and disadvantages)
 - 2. IEEE floating point representation: wider range, mostly approximately
- Overview of IEEE Floating Point representation
 - \blacktriangleright V = (-1)^s x M x 2^E
 - Precision options
 - 3 kinds: normalized, denormalized and special values

s e	хр	frac
1	8-bits	23-bits
ubl	e precision:	

Today's Menu

- Representing data in memory Most of this is review
 - "Under the Hood" Von Neumann architecture
 - Bits and bytes in memory
 - How to diagram memory -> Used in this course and other references
 - How to represent series of bits -> In binary, in hexadecimal (conversion)
 - What kind of information (data) do series of bits represent -> Encoding scheme
 - Order of bytes in memory -> Endian
 - Bit manipulation bitwise operations
 - Boolean algebra + Shifting
- Representing integral numbers in memory
 - Unsigned and signed
 - Converting, expanding and truncating
 - Arithmetic operations
- Representing real numbers in memory
 - IEEE floating point representation
 - Floating point in C casting, rounding, addition, …