CMPT 295

Unit - Data Representation
Lecture 5 - Representing fractional numbers in memory - IEEE floating point representation

Last Lecture

- Demo of size and sign conversion in C: code and results posted!
- Addition:
- Unsigned/signed:
- Behave the same way at the bit level
- Interpretation of resulting bit vector (sum) may differ

- If so, then actual sum $=(x+y)$ mod 2^{w} (equivalent to subtracting 2^{w} from true sum $\left.(x+y)\right)$

Signed addition -> true sum may overflow its w bits in memory

- If so then ...
- actual sum $=$ U2T ${ }_{w}\left[(x+y) \bmod 2^{w}\right]$
- true sum may be too +ve -> positive overflow OR too -ve -> negative overflow
- Subtraction
- Becomes an addition where the $2^{\text {nd }}$ operand is transformed into its additive inverse in two's complement
- Multiplication:
- Unsigned: actual product $=\left(x^{*} y\right) \bmod 2^{w}$
- Signed: actual product $=U 2 T_{w}\left[\left(x^{*} y\right) \bmod 2^{w}\right]$

Conclusion: the same bit pattern is interpreted differently.

- Can be replaced by additions and shifts

Questions

- Why are we learning this?
- What can we do in our program when we suspect that overflow may occur?

Demo - Looking at integer additions in C

- What does the demo illustrate?
- Unsigned addition
- Without overflow
- With overflow
- Can overflow be predicted?
- Signed addition
- Without overflow
- With positive overflow and negative overflow
- Can overflow be predicted?
- This demo (code and results) posted on our course web site

Today's Menu

- Representing data in memory - Most of this is review
- "Under the Hood" - Von Neumann architecture
- Bits and bytes in memory
- How to diagram memory -> Used in this course and other references
- How to represent series of bits -> In binary, in hexadecimal (conversion)
- What kind of information (data) do series of bits represent -> Encoding scheme
- Order of bytes in memory -> Endian
- Bit manipulation - bitwise operations
- Boolean algebra + Shifting
- Representing integral numbers in memory
- Unsigned and signed
- Converting, expanding and truncating
- Arithmetic operations
- Representing real numbers in memory
- IEEE floating point representation
- Floating point in C - casting, rounding, addition,

Converting a fractional decimal number into a binary number (bit vector)

- How would 346.625 (= $3465 / 8$) be represented as a binary number?
- Expanding the subtraction method we have already seen:

$$
\begin{aligned}
& 346.625->346-256=90->1 \times 2^{8} \mathrm{MSb} .625-0.5=0.125->1 \times 2^{-1} \\
& 90-128->\text { : }->0 \times 2^{7} \quad .125-0.25->\text { : }->0 \times 2^{-2} \\
& 90-64=26->1 \times 2^{6} \quad .125-0.125=0 \quad->1 \times 2^{-3} \\
& 26-32->\text { : }->0 \times 2^{5} \\
& 26-16=10 \quad->1 \times 2^{4} \\
& 10-8=2->1 \times 2^{3} \\
& 2-4->->0 \times 2^{2} \\
& 2-2=0 \quad->1 \times 2^{1} \\
& 0-1 \text {-> : } \quad->\times 2^{0} \text { LSb } \\
& \text { Binary representation is: } 101011010.1012 \\
& \text { Negative Powers } \\
& \text { of } 2 \\
& 2^{-1}=0.5 \\
& 2^{-2}=0.25 \\
& 2^{-3}=0.125 \\
& 2^{-4}=0.0625 \\
& 2^{-5}=0.03125
\end{aligned}
$$

Converting a binary number into a fractional decimal number

- How would 1011.101_{2} be represented as a fractional decimal number?

Review: Fractional decimal numbers

- Positional notation:

Example:

2.345
$\left.10^{-1}\right\lrcorner$
$10^{-2}=$
10^{-3}

1/1000
10^{-j}

Converting a binary number into a fractional decimal number

- Positional notation: can this be a possible encoding scheme?

Converting a binary number into a fractional decimal number

- How would 1011.101_{2} be represented as a fractional decimal number?
- Using the positional encoding scheme:

$$
\begin{aligned}
& 1011.101_{2}=> \\
& 1011_{2}->1 \times 2^{3}+1 \times 2^{1}+1 \times 2^{0}=11_{10} \\
& .101_{2}->1 \times 2^{-1}+1 \times 2^{-3}=0.5+0.125=0.625_{10}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Negative Powers } \\
& \quad \text { of } 2 \\
& 2^{-1}=0.5 \\
& 2^{-2}=0.25 \\
& 2^{-3}=0.125 \\
& 2^{-4}=0.0625 \\
& 2^{-5}=0.03125 \\
& 2^{-6}=0.015625 \\
& 2^{-7}=0.0078125 \\
& 2^{-8}=0.00390625
\end{aligned}
$$

Positional notation as encoding scheme?

- One way to answer this question is to investigate whether the encoding scheme allows for arithmetic operations
- Let's see: Using the positional notation as an encoding scheme produces fractional binary numbers that can be
- added
- multiplied by 2 by shifting left
- divided by 2 by shifting right (unsigned)
- Example:

$$
\begin{aligned}
1011.101_{2} & =115 / 8 \Rightarrow 8+2+1+1 / 2+1 / 8 \\
101.1101_{2} & =513 / 16 \Rightarrow 4+1+1 / 2+1 / 4+1 / 16 \\
10.11101_{2} & =229 / 32 \Rightarrow 2+1 / 2+1 / 4+1 / 8+1 / 32
\end{aligned}
$$

Divide by 2: >>
Divide by 2 : >>
$1011.101_{2}=115 / 8 \Rightarrow 8+2+1+1 / 2+1 / 8$
Multiply by $2: \ll 10111.01_{2}=231 / 4=>16+4+2+1+1 / 4$

Positional notation as encoding scheme?

- Advantage (so far):
- Straightforward arithmetic: can shift to multiply and divide, convert
- Disadvantage:
- Cannot encode all fractional numbers:
- Can only represent numbers of the form $x / 2^{k}$ (what about $1 / 5$ or -34.8)
- Only one setting of binary point within the w bits -> this limits the range of possible values
- What is this range?

Example -> $w=32$ bits and binary point located at $16^{\text {th }}$ bit :

$$
1111111111111111.1111111111111111
$$

Representing fractional numbers in memory

- Here is another possible encoding scheme: IEEE floating point representation (IEEE Standard 754)
- Overview:
- Binary Numerical Form: $V=(-1)^{\mathrm{s}} \mathrm{M} 2^{\mathrm{E}}$
- s - Sign bit -> determines whether number is negative or positive
- M - Significand (or Mantissa) -> fractional part of number
- E-Exponent
- Form of bit pattern:

s	\exp	frac

- Most significant bit (MSb) s (similar to sign-magnitude encoding)
- exp field encodes \mathbf{E} (but is not equal to E)
- frac field encodes \boldsymbol{M} (but is not equal to M)

IEEE Floating Point Representation Precision options

- Single precision: 32 bits ≈ 7 decimal digits, range: 10 ± 38

s	\exp	frac	
1	8 bits	23 bits	

- Double precision: 64 bits ≈ 16 decimal digits, range: 10 ± 308

S	\exp	Frac	
1	11 bits	52 bits	

IEEE Floating Point Representation Three "kinds" of values

Numerical Form: $V=(-1)^{s} M 2^{E}$

s	\exp	frac

$$
\begin{aligned}
& \mathrm{E}=\text { exp-bias } \\
& \text { and bias }=2^{k-1}-1 \\
& \text { Why is } \mathbf{E} \text { biased? Using single precision as an example: } \\
& \text { - exp range: [00000001 .. } 11111110] \text { and bias }=2^{8-1}-1 \\
& \text { - E range: [-126 .. 127] } \\
& \text { - If no bias: Erange: [1 254] } \Rightarrow 2^{1} \text { to } 2^{254} \text { express } \\
& \text { numbers < } 2 \text { © }
\end{aligned}
$$

Review: Scientific Notation and normalization

- From Wikipedia:
- Scientific notation is a way of expressing numbers that are too large or too small (usually would result a long string of digits) to be conveniently written in decimal form.
- In scientific notation, nonzero numbers are written in the form $m \times 10^{n}$
- In normalized notation, the exponent \mathbf{n} is chosen so that the absolute value of the significand m is at least 1 but less than 10.
- Examples:
- A proton's mass is $0.0000000000000000000000000016726 \mathrm{~kg}->1.6726 \times 10^{-27} \mathrm{~kg}$
- Speed of light is $299,792,458 \mathrm{~m} / \mathrm{s}->2.99792,458 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Syntax
$+/-\quad d_{0} \cdot d_{-1} d_{-2} d_{-3} \ldots d_{-n} \times b \exp ^{\exp }$
sign significand base exponent

- Let's try: $101011010.101_{2}->$

Summary

- Representing integral numbers (signed/unsigned) in memory:
- Encode schemes allow for small range of values exactly
- Representing fractional numbers in memory:

1. Positional notation (advantages and disadvantages)
2. IEEE floating point representation: wider range, mostly approximately

- Overview of IEEE Floating Point representation
- $V=(-1)^{s} \times M \times 2^{E}$
- Precision options
- 3 kinds: normalized, denormalized and special values

Single precision: 32 bits

Double precision: 64 bits

Today's Menu

- Representing data in memory - Most of this is review
- "Under the Hood" - Von Neumann architecture
- Bits and bytes in memory
- How to diagram memory -> Used in this course and other references
- How to represent series of bits -> In binary, in hexadecimal (conversion)
- What kind of information (data) do series of bits represent -> Encoding scheme
- Order of bytes in memory -> Endian
- Bit manipulation - bitwise operations
- Boolean algebra + Shifting
- Representing integral numbers in memory
- Unsigned and signed
- Converting, expanding and truncating
- Arithmetic operations
- Representing real numbers in memory
- IEEE floating point representation
- Floating point in C - casting, rounding, addition, ...

