
1

CMPT 295
Unit - Data Representation

Lecture 5 – Representing fractional numbers in memory
– IEEE floating point representation

Last Lecture

-2w
135

-121

-256

+2w+256
-135

If w = 8

121

-2w300

44
-256

If w = 8

Conclusion: the same bit pattern

is interpreted differently.

Conclusion: the same

bit pattern is interpreted

differently.

 Demo of size and sign conversion in C: code and results posted!

 Addition:

 Unsigned/signed:

 Behave the same way at the bit level

 Interpretation of resulting bit vector (sum) may differ

 Unsigned addition -> true sum may overflow its w bits in memory

 If so, then actual sum = (x + y) mod 2w (equivalent to subtracting 2w from true sum (x + y))

 Signed addition -> true sum may overflow its w bits in memory

 If so then …

 actual sum = U2Tw [(x + y) mod 2w]

 true sum may be too +ve -> positive overflow OR too –ve -> negative overflow

 Subtraction

 Becomes an addition where the 2nd operand is transformed into its additive inverse in two’s
complement

 Multiplication:

 Unsigned: actual product = (x * y) mod 2w

 Signed: actual product = U2Tw [(x * y) mod 2w]

 Can be replaced by additions and shifts

2

Questions

 Why are we learning this?

 What can we do in our program when we suspect that overflow

may occur?

3

Demo – Looking at integer additions in C

 What does the demo illustrate?

 Unsigned addition

Without overflow

With overflow

Can overflow be predicted?

 Signed addition

Without overflow

With positive overflow and negative overflow

Can overflow be predicted?

 This demo (code and results) posted on our course web site

4

Today’s Menu

 Representing data in memory – Most of this is review

 “Under the Hood” - Von Neumann architecture

 Bits and bytes in memory

 How to diagram memory -> Used in this course and other references

 How to represent series of bits -> In binary, in hexadecimal (conversion)

 What kind of information (data) do series of bits represent -> Encoding scheme

 Order of bytes in memory -> Endian

 Bit manipulation – bitwise operations

 Boolean algebra + Shifting

 Representing integral numbers in memory

 Unsigned and signed

 Converting, expanding and truncating

 Arithmetic operations

 Representing real numbers in memory

 IEEE floating point representation

 Floating point in C – casting, rounding, addition, …
5

We’ll illustrate

what we covered

today by having

a demo!

Converting a fractional decimal number

into a binary number (bit vector)

 How would 346.625 (= 346 5/8) be represented as a binary

number?

 Expanding the subtraction method we have already seen:

346.625 ->

Binary representation is: 1 0 1 0 1 1 0 1 0 . 1 0 12

346 - 256 = 90 -> 1 x 28

90 - 128 -> -> 0 x 27

90 - 64 = 26 -> 1 x 26

26 - 32 -> -> 0 x 25

26 - 16 = 10 -> 1 x 24

10 - 8 = 2 -> 1 x 23

2 - 4 -> -> 0 x 22

2 - 2 = 0 -> 1 x 21

0 - 1 -> -> 0 x 20

.625 - 0.5 = 0.125 -> 1 x 2-1

.125 - 0.25 -> -> 0 x 2-2

.125 - 0.125 = 0 -> 1 x 2-3

MSb LSbLSb MSb

MSb

Negative Powers

of 2

2−1 = 0.5

2−2 = 0.25

2−3 = 0.125

2−4 = 0.0625

2−5 = 0.031256

LSb

LSb

MSb

R2B(X)

Converting a binary number into a

fractional decimal number

 How would 1011.1012 be represented as a fractional

decimal number?

7

B2R(X)

Review: Fractional decimal numbers

 Positional notation: 10i

10i-1

100

10

1

1/10

1/100

1/1000

10-j

di di-1 ••• d2 d1 d0 d-1 d-2 d-3 ••• d-j

• • •

• • •

Example:

2.345 = 2×100 + 3×10−1 + 4×10−2 + 5×10−3

100

10−1

10−2

10−3

8

 Positional notation: can this be a possible encoding scheme?

2i

2i-1

4

2

1

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

• • •

1/2

1/4

1/8

2-j

Converting a binary number into a

fractional decimal number

9

B2R(X)

Converting a binary number into a

fractional decimal number

Negative Powers

of 2

2−1 = 0.5

2−2 = 0.25

2−3 = 0.125

2−4 = 0.0625

2−5 = 0.03125

2−6 = 0.015625

2−7 = 0.0078125

2−8 = 0.00390625

 How would 1011.1012 be represented as a fractional decimal

number?

 Using the positional encoding scheme:

1011.1012 =>

10112 -> 1 x 23 + 1 x 21 + 1 x 20 = 1110

.1012 -> 1 x 2-1 + 1 x 2-3 = 0.5 + 0.125 = 0.62510

Result:
10

B2R(X)

Positional notation as encoding scheme?

One way to answer this question is to investigate whether

the encoding scheme allows for arithmetic operations

 Let’s see: Using the positional notation as an encoding

scheme produces fractional binary numbers that can be

added

multiplied by 2 by shifting left

divided by 2 by shifting right (unsigned)

 Example: 1011.1012 = 11 5/8 => 8 + 2 + 1 + 1/2 + 1/8

101.11012 = 5 13/16 => 4 + 1 + 1/2 + 1/4 + 1/16

10.111012 = 2 29/32 => 2 + 1/2 + 1/4 + 1/8 + 1/32

1011.1012 = 11 5/8 => 8 + 2 + 1 + 1/2 + 1/8

10111.012 = 23 1/4 => 16 + 4 + 2 + 1 + 1/4

Divide by 2: >>

Divide by 2: >>

Multiply by 2: <<
11

So far so good!

Positional notation as encoding scheme?

 Advantage (so far):

 Straightforward arithmetic: can shift to multiply and divide, convert

 Disadvantage:

 Cannot encode all fractional numbers:

Can only represent numbers of the form x/2k (what about 1/5 or -34.8)

 Only one setting of binary point within the w bits -> this limits the range of
possible values

What is this range?

Example -> w = 32 bits and binary point located at 16th bit :

1111111111111111.1111111111111111

 Range: [0.0 .. 131071.99999….]
[0 .. 131071] [0 .. 1 - ε]

12

Not so good anymore!

Representing fractional numbers in memory

 Here is another possible encoding scheme:

IEEE floating point representation (IEEE Standard 754)

Overview:

 Binary Numerical Form: V = (–1)s M 2E

s – Sign bit -> determines whether number is negative or positive

M – Significand (or Mantissa) -> fractional part of number

E – Exponent

 Form of bit pattern:

Most significant bit (MSb) s (similar to sign-magnitude encoding)

exp field encodes E (but is not equal to E)

 frac field encodes M (but is not equal to M)

s exp frac

13

IEEE Floating Point Representation

Precision options

 Single precision: 32 bits ≈ 7 decimal digits, range:10±38

 Double precision: 64 bits ≈ 16 decimal digits, range:10±308

s exp frac

1 8 bits 23 bits

S exp Frac

1 11 bits 52 bits

In C:

14

IEEE Floating Point Representation

Three “kinds” of values

s exp frac

k bits n bits

00…00 (all 0’s)

denormalized
exp ≠ 0 and exp ≠ 11…11

normalized

E = exp – bias
and bias = 2k-1 – 1

M = 1 + frac

11…11 (all 1’s)

special cases

Numerical Form: V = (–1)s M 2E

Why is E biased? Using single precision as an example:
• exp range: [00000001 .. 11111110] and bias = 28-1 – 1

• E range: [-126 .. 127]

• If no bias: E range: [1 .. 254] => 21 to 2254

Why adding 1 to frac?

Because number V is first normalized before it is converted.
15

so cannot

express
numbers < 2

Review: Scientific Notation and normalization

 From Wikipedia:

 Scientific notation is a way of expressing numbers that are too large or too

small (usually would result a long string of digits) to be conveniently written in

decimal form.

 In scientific notation, nonzero numbers are written in the form m × 10n

 In normalized notation, the exponent n is chosen so that the absolute value

of the significand m is at least 1 but less than 10.

 Examples:

 A proton's mass is 0.0000000000000000000000000016726 kg -> 1.6726×10−27 kg

 Speed of light is 299,792,458 m/s -> 2.99792,458×108 m/s

 Let’s try: 1 0 1 0 1 1 0 1 0 . 1 0 12 ->

Syntax +/− d0 . d−1 d−2 d−3 … d−n × b exp

sign significand base exponent

16

Carnegie Mellon

Summary

 Representing integral numbers (signed/unsigned) in memory:

Encode schemes allow for small range of values exactly

 Representing fractional numbers in memory:

1. Positional notation (advantages and disadvantages)

2. IEEE floating point representation: wider range, mostly approximately

Overview of IEEE Floating Point representation

 V = (-1)s x M x 2E

 Precision options

 3 kinds: normalized,

denormalized

and special values

17

Today’s Menu

 Representing data in memory – Most of this is review

 “Under the Hood” - Von Neumann architecture

 Bits and bytes in memory

 How to diagram memory -> Used in this course and other references

 How to represent series of bits -> In binary, in hexadecimal (conversion)

 What kind of information (data) do series of bits represent -> Encoding scheme

 Order of bytes in memory -> Endian

 Bit manipulation – bitwise operations

 Boolean algebra + Shifting

 Representing integral numbers in memory

 Unsigned and signed

 Converting, expanding and truncating

 Arithmetic operations

 Representing real numbers in memory

 IEEE floating point representation

 Floating point in C – casting, rounding, addition, …
18

