CMPT 295

Unit - Data Representation
Lecture 4 — Representing integral numbers in memory — Arithmetic operations




Warm up question

» \WWhat is the value of ...
®» TMin (in hex) for signed char inC:

®» TMax (in hex) for signed int Iin C:

® TMin (in hex) for signed short InC:




Last Lecture

® |nferpretation of bif pattern B into either unsigned value U or signed value T
= B2U(X) and U2B(X) encoding schemes (conversion)
= B2T(X) and T2B(X) encoding schemes (conversion)
= Signed value expressed as two's complement => T
= Conversions from unsigned <-> signed values
= U2T(X) and T2U(X) => adding or subtracting 2%
= |mplication in C: when converting (implicitly via promotion and explicitly via casting):

= Sign:
= Unsigned <->signed (of same size) -> Both have same bit pattern, however, this bit pattern may
be interpreted differently
= Can have unexpected effects -> producing a different value

» Size:
= Small-> large (for signed, e.g., short fo int and for unsigned, e.g., unsigned short tO unsigned int)
® sign extension: For unsigned -> zeros extension, for signed -> sign bit extension
= Both yield expected result —> resulting value unchanged
= Large -> small (for signed, e.g., int to short and for unsigned, e.g., unsigned int tO unsigned short)
®» fruncation: Unsigned/signed -> most significant bits are truncated (discarded)
= May not yield expected results -> original value may be altered

= Both (sign and size): 1) size conversion is first done then 2) sign conversion is done




Today's Menu

Let’s first illustrate L .
what we covered | ™ Representing infegral numbers in memory
last lecture with a o

|
demol -

» Arithmetic operations




Demo — Looking at size and sign
conversions in C

» What does the demo illustratee
= Size conversion:
= Converting to a larger (wider) data type -> Converting short to int
= Converting to a smaller (narrower) data type -> Converting short to char
= Sign conversion:
= Converting from signed to unsigned -> Converting short tO unsigned short
= Converting from unsigned to signed -> Converting unsigned short 10 short
= Size and Sign conversion:

= Converting from signed to unsigned larger (wider) data type -> Converting
short fO unsigned int

» Converting from signed to unsigned smaller (narrower) data type ->
Converting short t0 unsigned char

= This demo (code and results) posted on our course web site



Integer addition (unlimited space)

» What happens when we add two decimal numberse
1 <-camryin

107,
+ 938,

carry out -> 1045,,

= Same thing happens when we add two binary numbers:
11 <-carry in
101100,
+ 101110,
carry out-> 1011010,




Unsigned addition (limited space, i.e.,
fixed size In memory)

» What happens when we add two unsigned values:

w=8 a) 00111011, 59, b) 10101110, 174,
+01011010, 7Y% +11001011, 203
149, 3771




Unsigned addition (+",) and overflow

Would be the . . u e o o
result of integer Operands: w bits «—— { ~
addition with v PRI Result of
unlimited space: , N unsigned
expected sum True Sum: w+1 bits f| %‘ ° o o addition with
overflow limited space:
Discard carry out bit: w bits  u + v s actual sum
(overflow) J
Tl’llJe Sum
o o . 2W+ i
» Discarding carry out pfr has Overflow
same effect as applying etual S
modular arithmetic w_1 4 croalsum
s =u+ v =(u+v) mod2¥ :I
0

u -+



Closer look at unsigned addifion overflow
w =8 ->[0..255] carry in
255,,=11111111, 90, 01011010,
7010 = 01011010, + 45, + 00101101,

45,, =00101101, 135, 10000111,

True Sum
carry out
~ 511+
Overflow
w=9< 300t _\-Ac’ruol Sum

, w=8 %35,3 1 ‘ range
carry in o PV where
255, 11111111, 0 1 w =28

+ 45, + 00101101,
300,, 100101100,

carry out




Comparing integer addition with
Unsigned addition (W — 4) Overflow: Effect of
[WiTh unlimited spoce] Integer Addition [

fixed size memory
with limited space

) . Unsigned Integer Additi Ln
(fixed size memory)

)

Uu-+v

U 0,
10

1

4

15

An overflow occurs when there is a carry out
For example: 15 (1111,) + 15(1111,) =30 (11110, <- true sum) and = 14 X¥1110, <- actual sum)




Signed addition (limited space, i.e.,
fixed size in memory)

» What happens when we add two signed values:
w=8 a) 00111011, 5910 b) 10101110, 82,5
+01011010, *7Y%0 +11001011,  +-53;
149, -135,,

Observation: Unsigned and signed additions have identical behavior
@ the bit level, i.e., their sum have the same bit-level
11 representation, but their interpretation differs




Signed addition (+', ) and overflow

Would be the e o o
result of integer Operands: w oits «—— { BN
addition with i Result of
unlimited space: signed
expected sum True Sum: w+1 Dbits overflow%‘ e e addition with
. . " limited space:
Discard carry out bit : w bits  u +, v c e actual sum
(overflow) \ J
True Sum
= Di d i bT h 2"=1"7T Positive Overflow
ISCarding cdiry ou : IT NAS Actual Sum
same effect as applying modular 2w-l-1 T T
arithmetic o + 4
s = u+,v =U2T [(u+Vv) mod2¥]
—w-1 = -
‘o
Negative Overflow w

—_w ==



w = 8-> [-128..127]
90,, =01011010,
45,, =00101101,

carry in

90, 01011010,
+ 45, + 00101101,

-45,, = 11010011,

Closer look at signed addition overtlow

1359 010000111, <=-121 TrueSum

-90,,= 10100110,

carry in

90,, 10100110,
+ 45, +00101101,

carry out
carry in 135
+ -45,, + 11010011, 4>
-135,, 101111001, <=121 45 ¢
carry out 178 4
: -135 +
carry in

9010 O]O]]O]OQ -256 +

+ .45, + 11010011,

-45,, 011010011,

carry out

45, 100101101,

carrv out

255 —+

0 +

1 l’ T121
: ‘; > | 45

Positive Overflow

> |-45
-121

X

Actual sum

Negative Overflow




Visualizing signed addition overflow
(w =4

Negative Overflow

4 6 T
14 ' Positive Overflow
For example: 7 (0111,) + 1 (0001,) =8 (1000, <- true sum) and = -8 (1000, <- actual sum)




What about subtraction¢e -> Addition

X+ (-x) =0
= Subtracting a number is equivalent to adding its additive inverse

» |nstead of subtracting a positive number, we could add its negative version:
107 107
- 118 => +(-118)
- 11
» [ et s try: 107,, > 01101011, -=> 01101011,
- 118,, >=01110110, >+ 10001010,

- 11 11110101,=>-11,,
T2B(X) conversion: (~(U2B(| X|)))+1
(~(U2B(|-118])))+1 CHECK: -128+64+32+16+4+1 =-11,,
(~(U2B(118)))+1
(~(01110110,))+1
(10001001,)+1
10001010,




|

Would be the
result of integer
multiplication
with unlimited
space: expected
product

Multiplication (*_, *' ) and overflow

Operands: w bi’rs{

True Product: 2w bits u - v

Discard: w bits

= Discarding high order w bits has
same effect as applying
modular arithmetic

p=u*_ v =(Uu*v) mod2¥

o)

u* v = U2T, [(u*v) mod 2¥]

» Example:w =4

[ Result of )

multiplication
with limited

space: actual

510 0101,
X 519 x 0101,
25,0 0101,
0000,
0000,

—66+1001,

\product

J




Multiplication with power-of-2
versus shifting

» [f x*y wherey=2¢ then x<<k
= For both signed and unsigned

» Example:
» x*8 = x*23 > x<<3
» x*24 = (x*29) - (x*23) = (x*32)—(x*8) > (x<<5) - (x<<3)

(decompose 24 in powers of 2 => 32— 8)

= Most machines shift and add faster than multiply
= We'll soon see that compiler generates this code automatically




Summary

= Demo of size and sign conversion in C: code and results posted!

»  Addifion: Ie sum Ifw=28]
= Unsigned/signed: 300 Over_ﬂ;\\’fv\:
= Behave the same way at the bit level ow_1 4 -25% ActualSum
= |nterpretation of resulting bit vector (sum) may differ _ [44
e som fw =8| = Unsigned addition -> may overflow, i.e., (w+1) bit is set 0 :
zw{ésn P°S_“£’85‘Ze‘f'ow Actual Sum = |f so, then actual sum obtained => (x +y) mod 2% T v
S = {121 Pt Signed addition -> may overflow, i.e., (w+1)1 bit is set
°T -121 = |f 5O, then true sum may be too +ve -> positive overflow OR too —ve -> negative overflow
_Evi_ésn :;gzaie Ote?fr:w u v = Then actual sum obtained => U2T, [(x +y) mod 2]
ow

= Subtraction

= Becomes an addifion where negative operands are transformed into their additive inverse (in two's
complement)

= Multiplication:
= Unsigned: actual product obtained -> (x *y) mod 2%
= Signed: actual product obtained -> U2T, [(x * y) mod 2]
18 = Can be replaced by additions and shifts




Next lecture

»
»
»
-
-
»
-
»
»
»
We'll illustrate -
what we covered »
today by having -
a demo!

» Representing real numbers in memory
19 = |EEE floating point representation




