
1

CMPT 295
Unit - Data Representation

Lecture 4 – Representing integral numbers in memory – Arithmetic operations

Warm up question

What is the value of …

TMin (in hex) for signed char in C: _________________

TMax (in hex) for signed int in C: _________________

TMin (in hex) for signed short in C: ________________

2

Last Lecture
 Interpretation of bit pattern B into either unsigned value U or signed value T

 B2U(X) and U2B(X) encoding schemes (conversion)

 B2T(X) and T2B(X) encoding schemes (conversion)

 Signed value expressed as two’s complement => T

 Conversions from unsigned <-> signed values

 U2T(X) and T2U(X) => adding or subtracting 2w

 Implication in C: when converting (implicitly via promotion and explicitly via casting):

 Sign:

 Unsigned <-> signed (of same size) -> Both have same bit pattern, however, this bit pattern may
be interpreted differently

 Can have unexpected effects -> producing a different value

 Size:

 Small -> large (for signed, e.g., short to int and for unsigned, e.g., unsigned short to unsigned int)

 sign extension: For unsigned -> zeros extension, for signed -> sign bit extension

 Both yield expected result –> resulting value unchanged

 Large -> small (for signed, e.g., int to short and for unsigned, e.g., unsigned int to unsigned short)

 truncation: Unsigned/signed -> most significant bits are truncated (discarded)

 May not yield expected results -> original value may be altered

 Both (sign and size): 1) size conversion is first done then 2) sign conversion is done
3

Today’s Menu

 Representing data in memory – Most of this is review

 “Under the Hood” - Von Neumann architecture

 Bits and bytes in memory

 How to diagram memory -> Used in this course and other references

 How to represent series of bits -> In binary, in hexadecimal (conversion)

 What kind of information (data) do series of bits represent -> Encoding scheme

 Order of bytes in memory -> Endian

 Bit manipulation – bitwise operations

 Boolean algebra + Shifting

 Representing integral numbers in memory

 Unsigned and signed

 Converting, expanding and truncating

 Arithmetic operations

 Representing real numbers in memory

 IEEE floating point representation

 Floating point in C – casting, rounding, addition, …

Let’s first illustrate

what we covered

last lecture with a

demo!

4

Demo – Looking at size and sign

conversions in C

 What does the demo illustrate?

 Size conversion:

Converting to a larger (wider) data type -> Converting short to int

Converting to a smaller (narrower) data type -> Converting short to char

 Sign conversion:

Converting from signed to unsigned -> Converting short to unsigned short

Converting from unsigned to signed -> Converting unsigned short to short

 Size and Sign conversion:

Converting from signed to unsigned larger (wider) data type -> Converting
short to unsigned int

Converting from signed to unsigned smaller (narrower) data type ->
Converting short to unsigned char

 This demo (code and results) posted on our course web site5

Integer addition (unlimited space)

 What happens when we add two decimal numbers?

10710

+ 93810

104510

 Same thing happens when we add two binary numbers:

1011002

+ 1011102

10110102

1 <- carry in

carry out ->

11 <- carry in

carry out ->

6

Unsigned addition (limited space, i.e.,

fixed size in memory)

 What happens when we add two unsigned values:

w = 8 a) 001110112 b) 101011102

+ 01011010 2 + 110010112

7

5910

+ 9010

14910

17410

+ 20310

37710

Unsigned addition (+
u
w) and overflow

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard carry out bit: w bits u +
u
w v

 Discarding carry out bit has

same effect as applying

modular arithmetic

s = u +
u
w v = (u + v) mod 2w

0

2w+1

Overflow

u +
u
w v

True Sum

Would be the

result of integer

addition with
unlimited space:

expected sum

Result of

unsigned

addition with
limited space:

actual sum

overflow

(overflow)

2w – 1
Actual Sum

8

Closer look at unsigned addition overflow
w = 8 -> [0..255]

25510 = 111111112

9010 = 010110102

4510 = 001011012

0

255

511
Overflow

True Sum

9010 010110102

+

13510

4510 001011012
+

25510 111111112

+

30010

4510 001011012
+

300

135

Actual Sum

range

where

w = 8

100001112

carry out

carry in

1001011002

carry out

carry in 44

9

w = 8

w = 9

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

0

2

4

6

8

10

12

14

16

Comparing integer addition with

unsigned addition (w = 4)

0

2

4

6

8

10

12

14

0

4

8

12

16

20

24

28

32

0
2

4
6

8
10

12
14

Integer Addition

Overflow: Effect of

fixed size memory

An overflow occurs when there is a carry out

Unsigned Integer Additionwith unlimited space with limited space
(fixed size memory)

u + v

u

v
v

u

u + v

30

15

15

For example: 15 (11112) + 15 (11112) = 30 (111102 <- true sum) and = 14 (111102 <- actual sum)

15

15

14

10

Signed addition (limited space, i.e.,

fixed size in memory)

 What happens when we add two signed values:

w = 8 a) 001110112 b) 101011102

+ 01011010 2 + 110010112

Observation: Unsigned and signed additions have identical behavior

@ the bit level, i.e., their sum have the same bit-level

representation, but their interpretation differs

5910

+ 9010

14910

-8210

+ -5310

-13510

11

Signed addition (+
t
w) and overflow

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard carry out bit : w bits u +
t
w v

 Discarding carry out bit has

same effect as applying modular

arithmetic

s = u +
t
w v = U2Tw [(u + v) mod 2w]

–2w –1

–2w

0

2w –1 – 1

2w – 1 Positive Overflow

Negative Overflow
u +

t
w v

overflow

(overflow)

Would be the

result of integer

addition with
unlimited space:

expected sum

Result of

signed

addition with
limited space:

actual sum

True Sum

Actual Sum

12

Closer look at signed addition overflow

–128

–256

0

127

255
Positive Overflow

Negative Overflow

Actual sum

True Sum

9010 = 010110102

4510 = 001011012

-4510 = 110100112

- 9010 = 101001102

w = 8 -> [-128..127]

-9010 101001102

+

-13510

-4510 110100112
+

-9010 101001102

+

-4510

4510 001011012
+

9010 010110102

+

13510

4510 001011012
+

9010 010110102

+

4510

-4510 110100112
+

135

–135

–45

45

0100001112 <= -121

1011110012 <= 121

carry out

carry out

carry in

carry in

0110100112
carry out

carry in

1001011012
carry out

carry in

45

-45
-121

121

13

Visualizing signed addition overflow

(w = 4)

-8
-6

-4
-2

0
2

4
6

-8

-6

-4

-2

0

2

4

6

-8

-6

-4

-2

0

2

4

6

8

u

v

Positive Overflow

Negative Overflow

u + v

For example: 7 (01112) + 1 (00012) = 8 (10002 <- true sum) and = -8 (10002 <- actual sum)

7

1

14

What about subtraction? -> Addition

 Subtracting a number is equivalent to adding its additive inverse

 Instead of subtracting a positive number, we could add its negative version:

107 107

– 118 => + (-118)

- 11

 Let ‘s try: 10710 -> 011010112 -> 011010112

– 11810 -> – 011101102 -> + 100010102

- 11 111101012 => -1110

T2B(X) conversion: (~(U2B(|X|)))+1

= (~(U2B(|-118|)))+1 CHECK: -128+64+32+16+4+1 = -1110

= (~(U2B(118)))+1
= (~(011101102))+1
= (100010012)+1
= 100010102

x + (-x) = 0

15

Multiplication (*
u
w , *

t
w) and overflow

True Product: 2w bits

Operands: w bits

Discard: w bits u *
u
w v

 Discarding high order w bits has

same effect as applying

modular arithmetic

p = u *
u

w v = (u * v) mod 2w

p = u *
t
w v = U2Tw [(u * v) mod 2w]

• • •

• • •

u

v*

• • •u · v

• • •

• • •

 Example: w = 4
Result of

multiplication
with limited

space: actual

product

Would be the

result of integer

multiplication
with unlimited

space: expected

product

510 01012

x

2510

510 01012

01012

01012

00002

00002

x

00110012

16

Multiplication with power-of-2

versus shifting

 If x * y where y = 2k then x << k

 For both signed and unsigned

 Example:

 x * 8 = x * 23 -> x << 3

 x * 24 = (x * 25) – (x * 23) = (x * 32) – (x * 8) -> (x << 5) – (x << 3)

(decompose 24 in powers of 2 => 32 – 8)

 Most machines shift and add faster than multiply

 We’ll soon see that compiler generates this code automatically

17

Summary
 Demo of size and sign conversion in C: code and results posted!

 Addition:

 Unsigned/signed:

 Behave the same way at the bit level

 Interpretation of resulting bit vector (sum) may differ

 Unsigned addition -> may overflow, i.e., (w+1)th bit is set

 If so, then actual sum obtained => (x + y) mod 2w

 Signed addition -> may overflow, i.e., (w+1)th bit is set

 If so, then true sum may be too +ve -> positive overflow OR too –ve -> negative overflow

 Then actual sum obtained => U2Tw [(x + y) mod 2w]

 Subtraction

 Becomes an addition where negative operands are transformed into their additive inverse (in two’s
complement)

 Multiplication:

 Unsigned: actual product obtained -> (x * y) mod 2w

 Signed: actual product obtained -> U2Tw [(x * y) mod 2w]

 Can be replaced by additions and shifts

-2w300

44
-256

-2w
135

-121

-256

+2w+256
-135

If w = 8

121

If w = 8

18

Next lecture

 Representing data in memory – Most of this is review

 “Under the Hood” - Von Neumann architecture

 Bits and bytes in memory

 How to diagram memory -> Used in this course and other references

 How to represent series of bits -> In binary, in hexadecimal (conversion)

 What kind of information (data) do series of bits represent -> Encoding scheme

 Order of bytes in memory -> Endian

 Bit manipulation – bitwise operations

 Boolean algebra + Shifting

 Representing integral numbers in memory

 Unsigned and signed

 Converting, expanding and truncating

 Arithmetic operations

 Representing real numbers in memory

 IEEE floating point representation

 Floating point in C – casting, rounding, addition, …
19

We’ll illustrate

what we covered

today by having

a demo!

