CMPT 295

Unit - Data Representation
Lecture 3 - Representing integral numbers in memory - unsigned and signed

Last Lecture

- Von Neumann architecture
- Architecture of most computers
- Its components: CPU, memory, input and ouput, bus
- One of its characteristics: Data and code (programs) both stored in memory
- A look at memory: defined byte-addressable memory, diagram of (compressed) memory
- Word size (w): size of a series of bits (or bit vector) we manipulate, also size of machine words (see Section 2.1.2)
- A look at bits in memory
- Why binary numeral system (0 and 1 -> two values) is used to represent information in memory
- Algorithm for converting binary to hexadecimal (hex)

1. Partition bit vector into groups of 4 bits, starting from right, i.e., least significant byte (LSB)

- If most significant "byte" (MSB) does not have 8 bits, pad it: add 0's to its left

2. Translate each group of 4 bits into its hex value

- What do bits represent? Encoding scheme gives meaning to bits
- Order of bytes in memory: little endian versus big endian
- Bit manipulation - regardless of what bit vectors represent
- Boolean algebra: bitwise operations => AND (\&), OR (।), XOR (^), NOT (~

- Shift operations: left shift, right logical shift and right arithmetic shift
- Logical shift: Fill x with y 0's on left
- Arithmetic shift: Fill \mathbf{x} with \mathbf{y} copies of \mathbf{x} 's sign bit on left

NOTE:

C logical operators

- Sign bit: Most significant bit (MSb) before shiffing occurred

Today's Menu

- Representing data in memory - Most of this is review
- "Under the Hood" - Von Neumann architecture
- Bits and bytes in memory
- How to diagram memory -> Used in this course and other references
- How to represent series of bits -> In binary, in hexadecimal (conversion)
- What kind of information (data) do series of bits represent -> Encoding scheme
- Order of bytes in memory -> Endian
- Bit manipulation - bitwise operations
- Boolean algebra + Shifting
- Representing integral numbers in memory
- Unsigned and signed
- Converting, expanding and truncating
- Arithmetic operations
- Representing real numbers in memory
- IEEE floating point representation
- Floating point in C - casting, rounding, addition,

Warm up exercise!

As a warm up exercise, fill in the blanks!

- If the context is C (on our target machine)
- char => \qquad bits/ \qquad byte
- short => \qquad bits/ \qquad bytes
- int $=>$ __ bits/ ___ bytes
- long => ___ bit bits/ \qquad bytes
- float => __ bits/ ___ bytes
- double=> ___ bit bits/ \qquad bytes
- pointer (e.g. char *) $=>$ \qquad bits/ \qquad bytes

Unsigned integral numbers

- What if the byte at $M[0 \times 0002]$ represented an unsigned integral A series of bits
$=>$ bit vector number, what would be its value?
- $\boldsymbol{X}=01101001_{2} \quad w=8$
$w=>$ width of
the bit vector
- For $w=8$, range of possible unsigned values: [
- For any w, range of possible unsigned values: [
- Conclusion: w bits can only represent a fixed \# of possible values, but these w bits represent these values exactly

$B 2 U(X)$ Conversion (Encoding scheme)

- Positional notation: expand and sum all terms

Example: $246_{10}=2 \times 10^{2}+4 \times 10^{1}+6 \times 10^{0}$

$$
B 2 U(X)=\sum_{i=0}^{w-1} x_{i} \cdot 2^{i}
$$

Range of possible values?

- If the context is C (on our target machine)
- unsigned char?
- unsigned short?
- unsigned int?
- unsigned long?

Examples of "Show your work"

$U 2 B(X)$ Conversion (into 8-bit binary \# => w $=8$)

$$
\begin{aligned}
& \text { Method } 1 \text { - Using subtraction: } \\
& \text { subtracting decreasing } \\
& \text { power of } 2 \text { until reach } 0 \\
& 246=>246-128=118->128=1 \times 2^{7} \\
& 118-64=54->64=1 \times 2^{6} \\
& 54-32=22 \quad->32=1 \times 2^{5} \\
& 22-16=6 \quad->16=1 \times 2^{4} \\
& 6-8=\text { nop! }->8=0 \times 2^{3} \\
& 6-4=2 \quad->4=1 \times 2^{2} \\
& 2-2=0 \quad->2=1 \times 2^{1} \\
& 0-1=\text { nop! -> } 1=0 \times 2^{0}
\end{aligned}
$$

$246=>11110110_{2}$

$$
\begin{array}{r}
\text { Method } 2 \text { - Using division: } \\
\text { dividing by } 2 \\
\text { until reach 0 } \\
246=>246 / 2=123 \quad->R=0 \\
123 / 2=61
\end{array} \quad->R=1 .
$$

$246=>11110110_{2}$

$U 2 B(X)$ Conversion - A few tricks

- Decimal -> binary
- Trick: When decimal number is 2^{n}, then its binary representation is 1 followed by n zero's
- Let's try: if $X=32=>X=2^{5}$, then $\mathrm{n}=5=>10000_{2} \quad(\mathrm{w}=5)$

What if $w=8$?

Check: $1 \times 2^{4}=32$

- Decimal -> hex
- Trick: When decimal number is 2^{n}, then its hexadecimal representation is 2^{i} followed by j zero's, where $\mathrm{n}=\mathrm{i}+4 \mathrm{j}$ and 0 <= $\mathrm{i}<=3$
- Let try: if $X=8192=>X=2^{13}$, then $\mathrm{n}=13$ and $13=\mathrm{i}+4 \mathrm{j}=>1+4 \times 3$
=> 0x2000

Convert 0×2000 into a binary number:
Check: $2 \times 16^{3}=2 \times 4096=8192$

Signed integral numbers

- What if the byte at $M[0 \times 0001]$ represented a signed integral number, what would be its value? $T=>$ Two's complement $\begin{aligned} & \text { W }=>\text { width of } \\ & \text { the bitvector }\end{aligned}$
- $\boldsymbol{X}=11110100_{2} \quad \mathrm{w}=8$
- Let's apply the encoding scheme: $B 2 T(X)=\underbrace{-x_{w-1} \cdot 2^{w-1}}_{\text {sinn }}+\sum_{i=0}^{w-2} x_{i} \cdot 2^{i}$
$-1 \times 2^{7}+1 \times 2^{6}+1 \times 2^{5}+1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0}=$
- What would be the bit pattern of the ...
- Most negative value:
- Most positive value:
- For $w=8$, range of possible signed values: [
- For any w, range of possible signed values: [
- Conclusion: same as for unsigned integral numbers

Examples of "Show your work"

T2B(X) Conversion -> Two's Complement

$$
w=8
$$

Method 1 If $X<0,(\sim(\mathbf{U 2 B}(|X|)))+\mathbf{1}$
If $X=-14$ (and 8 bit binary \#s)

1. $|X|=>|-14|=$
2. $\mathbf{U 2 B}(14)=>$
3. $\sim\left(00001110_{2}\right)=>$
4. $\left(11110001_{2}\right)+1=>$

Binary addition:
11110001
$+00000001$

Method 2 If $X<0, \mathbf{U} \mathbf{2 B}\left(X+\mathbf{2}^{\mathbf{w}}\right)$
If $X=-14$ (and 8 bit binary \#s)

1. $X+\mathbf{2}^{\mathrm{w}}=>-14+$
2. U2B(242) =>

Using subtraction:

$$
242-128=114->1 \times 2^{7}
$$

$$
114-64=50 \quad->1 \times 2^{6}
$$

$$
50-32=18 \quad->1 \times 2^{5}
$$

$$
18-16=2 \quad->1 \times 2^{4}
$$

$$
2-8 \text {-> nop! -> } 0 \times 2^{3}
$$

$$
2-4 \text {-> nop! -> } 0 \times 2^{2}
$$

$$
2-2=0 \quad->1 \times 2^{1}
$$

$$
0-1 \text {-> nop! } \quad->0 \times 2^{0}
$$

Properties of unsigned \& signed conversions

$$
w=4
$$

X	$B 2 U(X)$	$B 2 T(X)$
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

- Equivalence
- Both encoding schemes (B2U and $B 2 T$) produce the same bit patterns for nonnegative values
- Uniqueness
- Every bit pattern produced by these encoding schemes (B2U and $B 2 T$) represents a unique (and exact) integer value
- Each representable integer has unique bit pattern

Converting between signed \& unsigned of same size (same data type)

w $=8$
Unsigned

$$
\text { If } u x=129_{10}
$$

Maintain Same Bit Pattern
Signed (Two's Complement)
x
then $x=$

- Conclusion - Converting between unsigned and signed numbers: Both have same bit pattern, however, this bit pattern may be interpreted differently, i.e., producing a different value

Converting signed \leftrightarrow unsigned with $\mathbf{w}=4$

Signed		Bits	$T 2 U(X)$	Unsigned
0		0000		0
1		0001		1
2		0010		2
3		0011		3
4	$U 2 T(X)$	0100		4
5	$+16\left(+2^{4}\right)$	0101	$T 2 U(X)$	5
6		0110		6
7		0111		7
-8		1000		8
-7		1001		9
-6		1010		10
-5		1011		11
-4		1100	$-16\left(+2^{4}\right)$	12
-3	$U 2 T(X)$	1101		13
-2		1110		14
-1		1111		15

Visualizing the relationship between signed \& unsigned

$$
\text { If } w=4,2^{4}=16
$$

Signed (2's Complement)

Range

Sign extension

- Converting unsigned (or signed) of different sizes (different data types)

1. Small data type -> larger

- Sign extension
- Unsigned: zero extension
- Signed: sign bit extension
- Conclusion: Value unchanged
- Let's try:

- Going from a data type that has a width of 3 bits ($\mathbf{w}=3$) to a data type that has a width of 5 bits ($\mathbf{w}=5$)
- Unsigned: $x=3$ =>

$$
\begin{array}{rl}
011_{2} & w=3 \\
w & =5 \\
011_{2} & w=3 \\
w & =5
\end{array}
$$

- Signed: $x=3$ =>

$$
\text { new } X=\quad<=
$$

$$
\begin{array}{rlrl}
x & =4 & => & 100_{2} \\
\text { new } x & =3 \\
x & <= & & w=5 \\
x & =-3 & => & 101_{2} \\
\text { ne } & =3 \\
\text { new } x & =< & & w=5
\end{array}
$$

Truncation

- Converting unsigned (or signed) of different sizes(different data types)

2. Large data type -> smaller

- Truncation
- Conclusion: Value may be altered
- A form of overflow
- Let's try:

- Going from a data type that has a width of 5 bits ($\mathbf{w}=5$) to a data type that has a width of 3 bits ($\mathbf{w}=3$)
- Unsigned: $x=27=>11011_{2} \quad w=5$

$$
\text { new } X=\quad<=\quad \text { w }=3
$$

- Signed: $\quad x=-15=>10001_{2} \quad \mathrm{w}=5$

$$
x=-1 \Rightarrow 11111_{2} \quad w=5
$$

$$
\text { new } x=\quad<=\quad \text { w }=3 \text { new } x=<=\quad w=3
$$

Summary

- Interpretation of bit pattern B into either unsigned value U or signed value T
- $B 2 U(X)$ and $U 2 B(X)$ encoding schemes (conversion)
- $B 2 T(X)$ and $T 2 B(X)$ encoding schemes (conversion)
- Signed value expressed as two's complement => T
- Conversions from unsigned <-> signed values
- $U 2 T(X)$ and $T 2 U(X)=>$ adding or subtracting 2^{w}
- Implication in C: when converting (implicitly via promotion and explicitly via casting):
- Sign:
- Unsigned <-> signed (of same size) -> Both have same bit pattern, however, this bit pattern may be interpreted differently
- Can have unexpected effects -> producing a different value
- Size:
- Small -> large (for signed, e.g., short to int and for unsigned, e.g., unsigned short to unsigned int)
- sign extension: For unsigned -> zeros extension, for signed -> sign bit extension
- Both yield expected result -> resulting value unchanged
- Large -> small (e.g., unsigned int to unsigned short)
- truncation: Unsigned/signed -> most significant bits are truncated (discarded)
- May not yield expected results -> original value may be altered
- Both (sign and size): 1) size conversion is first done then 2) sign conversion is done

Next Lecture

- Representing data in memory - Most of this is review
- "Under the Hood" - Von Neumann architecture
- Bits and bytes in memory
- How to diagram memory -> Used in this course and other references
- How to represent series of bits -> In binary, in hexadecimal (conversion)
- What kind of information (data) do series of bits represent -> Encoding scheme
- Order of bytes in memory -> Endian
- Bit manipulation - bitwise operations
- Boolean algebra + Shifting
- Representing integral numbers in memory
- Unsigned and signed
- Converting, expanding and truncating
- Arithmetic operations
- Representing real numbers in memory
- IEEE floating point representation
- Floating point in C - casting, rounding, addition,

