CMPT 295

Unit - Data Representation

Lecture 3 – Representing integral numbers in memory - unsigned and signed

Last Lecture

- Von Neumann architecture
 - Architecture of most computers
 - Its components: CPU, memory, input and ouput, bus
 - One of its characteristics: Data and code (programs) both stored in memory
- A look at memory: defined byte-addressable memory, diagram of (compressed) memory
 - Word size (w): size of a series of bits (or bit vector) we manipulate, also size of machine words (see Section 2.1.2)
- A look at bits in memory

2

- Why binary numeral system (0 and 1 -> two values) is used to represent information in memory
- Algorithm for converting binary to hexadecimal (hex)
 - 1. Partition bit vector into groups of 4 bits, starting from right, i.e., least significant byte (LSB)
 - If most significant "byte" (MSB) does not have 8 bits, pad it: add 0's to its left
 - 2. Translate each group of 4 bits into its hex value
- What do bits represent? Encoding scheme gives meaning to bits
- Order of bytes in memory: little endian versus big endian
- Bit manipulation regardless of what bit vectors represent
 - Boolean algebra: bitwise operations => AND ($_{\&}$), OR ($_{|}$), XOR ($_{\rangle}$), NOT ($_{\sim}$)
 - Shift operations: left shift, right logical shift and right arithmetic shift
 - Logical shift: Fill x with y 0's on left
 - Arithmetic shift: Fill x with y copies of x's sign bit on left
 - Sign bit: Most significant bit (MSb) before shifting occurred

NOTE:

C logical operators and C bitwise (bit-level) operators behave differently! Watch out for && versus &, 11 versus 1, ...

Today's Menu

- Representing data in memory Most of this is review
 - "Under the Hood" Von Neumann architecture
 - Bits and bytes in memory
 - How to diagram memory -> Used in this course and other references
 - How to represent series of bits -> In binary, in hexadecimal (conversion)
 - What kind of information (data) do series of bits represent -> Encoding scheme
 - Order of bytes in memory -> Endian
 - Bit manipulation bitwise operations
 - Boolean algebra + Shifting
- Representing integral numbers in memory
 - Unsigned and signed
 - Converting, expanding and truncating
 - Arithmetic operations

- Representing real numbers in memory
 - IEEE floating point representation
 - ► Floating point in C casting, rounding, addition, ...

Warm up exercise!

As a warm up exercise, fill in the blanks!

If the context is C (on our target machine)

▶ char	=>	bits/	byte
--------	----	-------	------

- short => ____ bits/ ____ bytes
- int => ____ bits/ ____ bytes
- long => ____ bits/ ____ bytes
- float => ____ bits/ ____ bytes
- double=> ____ bits/ ____ bytes

pointer (e.g. char *)

4

=> ____ bits/ ____ bytes

B2U(X) Conversion (Encoding scheme)

Positional notation: expand and sum all terms

Range of possible values?

- If the context is C (on our target machine)
 unsigned char?
 - unsigned short?
 - unsigned int?
 - unsigned long?

Examples of "Show your work"

U2B(X) Conversion (into 8-bit binary # => w = 8)

Method 2 - Using division: Method 1 - Using subtraction: dividing by 2 subtracting decreasing until reach 0 power of 2 until reach 0 246 => 246 / 2 = 123 -> R = 0 246 => 246 - 128 = 118 ->128 = 1 x 2⁷ 123 / 2 = 61 -> R = 1 $118 - 64 = 54 -> 64 = 1 \times 2^6$ 61 / 2 = 30 -> R = 1 54 - 32 = 22 -> $32 = 1 \times 2^5$ 30 / 2 = 15 -> R = 0 22 - 16 = 6 -> $16 = 1 \times 2^4$ 15/2 = 7 -> R = 1 $6 - 8 = nop! \rightarrow 8 = 0 \times 2^3$ 7/2=3 -> R=1 $6 - 4 = 2 -> 4 = 1 \times 2^2$ 3/2 = 1 -> R = 1 2 - 2 = 0 -> $2 = 1 \times 2^{1}$ 1/2=0 -> R=1 $0 - 1 = nop! \rightarrow 1 = 0 \times 2^{0}$

 $246 => 1 1 1 1 0 1 1 0_{2}$

246 => 1 1 1 1 0 1 1 0₂

U2B(X) Conversion – A few tricks

Decimal -> binary

- Trick: When decimal number is 2ⁿ, then its binary representation is 1 followed by n zero's
- Let's try: if $X = 32 \implies X = 2^5$, then $n = 5 \implies 10000_2$ (w = 5)
 - What if W = 8?

Check: 1 x 2⁴ = 32

Decimal -> hex

9

- Trick: When decimal number is 2ⁿ, then its hexadecimal representation is 2ⁱ followed by j zero's, where n = i + 4j and 0 <= i <=3</p>
- Let try: if $X = 8192 \implies X = 2^{13}$, then n = 13 and 13 = i + 4j \implies 1 + 4 x 3

=> 0x2000

Convert 0x2000 into a binary number:

Check: $2 \times 16^3 = 2 \times 4096 = 8192$

Signed integral numbers

Sign bit

What if the byte at M[0x0001] represented a signed integral number, what would be its value?
 T => Two's Complement w =>width of the bit vector
 X = 11110100, w = 8

• Let's apply the encoding scheme: $B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{m} x_i \cdot 2^i$

 $-1 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 =$

- What would be the bit pattern of the ...
 - Most negative value:
 - Most positive value:
- For w = 8, range of possible signed values: [
- For any w, range of possible signed values: [
- Conclusion: same as for unsigned integral numbers

Examples of "Show your work"

T2B(X) Conversion -> Two's Complement

w = 8

Method 1 If X < 0, (~(U2B(|X|)))+1

If X = -14 (and 8 bit binary #s)

- **1.** $|X| \Rightarrow |-14| =$
- **2.** U2B(14) =>
- **3.** ~(00001110₂) =>
- **4.** (11110001₂)+1 =>

Binary addition: 11110001 <u>+ 00000001</u> Method 2 If X < 0, U2B($X + 2^w$) If X = -14 (and 8 bit binary #s) 1. $X + 2^w => -14 +$

2. U2B(242**) =>**

Using subtraction: $242 - 128 = 114 \rightarrow 1 \times 2^{7}$ $114 - 64 = 50 \rightarrow 1 \times 2^{6}$ $50 - 32 = 18 \rightarrow 1 \times 2^{5}$ $18 - 16 = 2 \rightarrow 1 \times 2^{4}$ $2 - 8 \rightarrow nop! \rightarrow 0 \times 2^{3}$ $2 - 4 \rightarrow nop! \rightarrow 0 \times 2^{2}$ $2 - 2 = 0 \rightarrow 1 \times 2^{1}$ $0 - 1 \rightarrow nop! \rightarrow 0 \times 2^{0}$

Properties of unsigned & signed conversions

w = 4

X	B2U(X)	B2T(X)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

Equivalence

Both encoding schemes (B2U and B2T) produce the same bit patterns for nonnegative values

Uniqueness

- Every bit pattern produced by these encoding schemes (B2U and B2T) represents a unique (and exact) integer value
- Each representable integer has unique bit pattern

Converting between signed & unsigned of same size (same data type)

Conclusion - Converting between unsigned and signed numbers: Both have same bit pattern, however, this bit pattern may be interpreted differently, i.e., producing a different value

Converting signed \leftrightarrow unsigned with w = 4

Visualizing the relationship between signed & unsigned

Sign extension

Converting unsigned (or signed) of different sizes (different data types)

- 1. Small data type -> larger
 - Sign extension
 - Unsigned: zero extension
 - Signed: sign bit extension
- Conclusion: Value unchanged
- Let's try:

- Going from a data type that has a width of 3 bits (w = 3) to a data type that has a width of 5 bits (w = 5)
- Unsigned: $X = 3 \implies 011_2 = 3 = X = 3$ $X = 4 \implies 100_2 = 3$
 - new X = <= w = 5 new X = <= w = 5
- Signed: $x = 3 \implies 011_2 \text{ w} = 3$ $x = -3 \implies 101_2 \text{ w} = 3$
 - new x = <= w = 5 new x = <= w = 5

Truncation

Converting unsigned (or signed) of different sizes(different data types)

- 2. Large data type -> smaller
 - Truncation
- Conclusion: Value may be altered
 - A form of overflow

Let's try:

• Going from a data type that has a width of 5 bits (w = 5) to a data type that has a width of 3 bits (w = 3)

X

• Unsigned: $x = 27 => 11011_2$ w = 5

new X = <= w = 3

Signed: $x = -15 \Rightarrow 10001_2$ w = 5 $x = -1 \Rightarrow 11111_2$ w = 5

new x = <= w=3 new x = <= w=3

Summary

- Interpretation of bit pattern B into either unsigned value U or signed value T
 - B2U(X) and U2B(X) encoding schemes (conversion)
 - B2T(X) and T2B(X) encoding schemes (conversion)
 - Signed value expressed as two's complement => T
- Conversions from unsigned <-> signed values
 - U2T(X) and T2U(X) => adding or subtracting 2^w
- Implication in C: when converting (implicitly via promotion and explicitly via casting):
 - Sign:
 - Unsigned <-> signed (of same size) -> Both have same bit pattern, however, this bit pattern may be interpreted differently
 - Can have unexpected effects -> producing a different value
 - Size:
 - Small -> large (for signed, e.g., short to int and for unsigned, e.g., unsigned short to unsigned int)
 - sign extension: For unsigned -> zeros extension, for signed -> sign bit extension
 - Both yield expected result -> resulting value unchanged
 - Large -> small (e.g., unsigned int to unsigned short)
 - truncation: Unsigned/signed -> most significant bits are truncated (discarded)
 - May not yield expected results -> original value may be altered
 - Both (sign and size): 1) size conversion is first done then 2) sign conversion is done

Next Lecture

- Representing data in memory Most of this is review
 - "Under the Hood" Von Neumann architecture
 - Bits and bytes in memory
 - How to diagram memory -> Used in this course and other references
 - How to represent series of bits -> In binary, in hexadecimal (conversion)
 - What kind of information (data) do series of bits represent -> Encoding scheme
 - Order of bytes in memory -> Endian
 - Bit manipulation bitwise operations
 - Boolean algebra + Shifting
- Representing integral numbers in memory
 - Unsigned and signed
 - Converting, expanding and truncating
 - Arithmetic operations
- Representing real numbers in memory
 - IEEE floating point representation
 - Floating point in C casting, rounding, addition, …