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CMPT 295
Unit - Data Representation

Lecture 3 – Representing integral numbers in memory - unsigned and signed



Last Lecture

 Von Neumann architecture

 Architecture of most computers

 Its components: CPU, memory, input and ouput, bus

 One of its characteristics: Data and code (programs) both stored in memory

 A look at memory: defined byte-addressable memory, diagram of (compressed) memory

 Word size (w): size of a series of bits (or bit vector) we manipulate, also size of machine words 
(see Section 2.1.2)

 A look at bits in memory

 Why binary numeral system (0 and 1 -> two values) is used to represent information in memory

 Algorithm for converting binary to hexadecimal (hex)
1. Partition bit vector into groups of 4 bits, starting from right, i.e., least significant byte (LSB)

 If most significant “byte” (MSB) does not have 8 bits, pad it: add 0’s to its left
2. Translate each group of 4 bits into its hex value

 What do bits represent? Encoding scheme gives meaning to bits

 Order of bytes in memory: little endian versus big endian

 Bit manipulation – regardless of what bit vectors represent

 Boolean algebra: bitwise operations => AND (&), OR (|), XOR (^), NOT (~) 

 Shift operations: left shift, right logical shift and right arithmetic shift

 Logical shift: Fill x with y 0’s on left

 Arithmetic shift: Fill x with y copies of x‘s sign bit on left

 Sign bit: Most significant bit (MSb) before shifting occurred

NOTE:
C logical operators 

and C bitwise (bit-level) 

operators behave 

differently!
Watch out for && versus 

&, || versus |,  … 
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Today’s Menu

 Representing data in memory – Most of this is review

 “Under the Hood” - Von Neumann architecture

 Bits and bytes in memory 

 How to diagram memory -> Used in this course and other references

 How to represent series of bits -> In binary, in hexadecimal (conversion)

 What kind of information (data) do series of bits represent -> Encoding scheme

 Order of bytes in memory -> Endian

 Bit manipulation – bitwise operations

 Boolean algebra + Shifting

 Representing integral numbers in memory

 Unsigned and signed

 Converting, expanding and truncating

 Arithmetic operations

 Representing real numbers in memory

 IEEE floating point representation

 Floating point in C – casting, rounding, addition, …
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Warm up exercise! 

As a warm up exercise, fill in the blanks!

 If the context is C (on our target machine)

char  => _____ bits/ _____ byte

short => _____ bits/ _____ bytes

int => _____ bits/ _____ bytes

long  => _____ bits/ _____ bytes

float => _____ bits/ _____ bytes

double=> _____ bits/ _____ bytes 

pointer (e.g. char *)

=> _____ bits/ _____ bytes4



Unsigned integral numbers

What if the byte at M[0x0002] represented an unsigned integral 

number, what would be its value?

 X = 011010012 w = 8

 Let’s apply the encoding scheme:

 For w = 8, range of possible unsigned values: [                            ]

 For any w, range of possible unsigned values: [                ]

 Conclusion: w bits can only represent a fixed # of possible values, 

but these w bits represent these values exactly

B2U(X )  xi 2
i

i0

w1



0 x 27 + 1 x 26 + 1 x 25 + 0 x 24 + 1 x 23 + 0 x 22 + 0 x 21 + 1 x 20 =        

Remember:

w =>width of 

the bit vector

A series of bits
=> bit vector
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 Positional notation: expand and sum all terms

10i

10i-1

100

10

1

di di-1 ••• d2 d1 d0

• • • • • •

2i

2i-1

4

2

1

B2U(X )  xi 2
i

i0

w1

Example: 24610 = 2 x 102 + 4 x 101 + 6 x 100

1’s
10’s
100’s

= 100

= 101

= 102

B2U(X) Conversion (Encoding scheme)
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Range of possible values?

 If the context is C (on our target machine)

unsigned char?

unsigned short?

unsigned int?

unsigned long?
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U2B(X) Conversion (into 8-bit binary # => w = 8)

Method 1 - Using subtraction:

subtracting decreasing

power of 2 until reach 0

246 => 246 – 128 = 118   ->128 = 1 x 27 

118 – 64 = 54      -> 64 = 1 x 26 

54 – 32 = 22      -> 32 = 1 x 25

22 – 16 = 6 -> 16 = 1 x 24

6  – 8 = nop!  ->   8 = 0 x 23

6  – 4  = 2 -> 4 = 1 x 22

2 – 2 = 0        -> 2 = 1 x 21

0 – 1 = nop!  -> 1 = 0 x 20

246 => 1 1 1 1 0 1 1 02

Method 2 - Using division: 
dividing by 2 
until reach 0

246 => 246 / 2 = 123   ->  R = 0

123 / 2 = 61    ->  R = 1

61 / 2 = 30    ->  R = 1

30 / 2 = 15    -> R = 0

15 / 2 = 7 -> R = 1

7 / 2 = 3      -> R = 1

3 / 2 = 1      -> R = 1

1 / 2 = 0      ->  R = 1

246 => 1 1 1 1 0 1 1 02

Examples of “Show your work”
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 Decimal -> binary

 Trick: When decimal number is 2n, then its binary representation is 1 followed 
by n zero’s 

 Let’s try: if X = 32 => X = 25, then n = 5 => 100002 (w = 5)

What if w = 8?

Check: 1 x 24 = 32

 Decimal -> hex

 Trick: When decimal number is 2n, then its hexadecimal representation is 2i 

followed by j zero’s, where n = i + 4j and 0 <= i <=3

 Let try: if X = 8192 => X = 213, then n = 13 and 13 = i + 4j => 1 + 4 x 3 

=> 0x2000    

Convert 0x2000 into a binary number:

Check: 2 x 163 = 2 x 4096 = 8192

U2B(X) Conversion – A few tricks
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Signed integral numbers

What if the byte at M[0x0001] represented a signed integral 

number, what would be its value?

 X = 111101002 w = 8

 Let’s apply the encoding scheme:

 What would be the bit pattern of the …

Most negative value:

Most positive value:

 For w = 8, range of possible signed values: [                             ]

 For any w, range of possible signed values: [                  ]

 Conclusion: same as for unsigned integral numbers

-1 x 27 + 1 x 26 + 1 x 25 + 1 x 24 + 0 x 23 + 1 x 22 + 0 x 21 + 0 x 20 =        

B2T(X)  xw1 2
w1

 xi 2
i

i0

w2



Sign bit

Remember:

w =>width of 

the bit vector
T => Two’s Complement
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T2B(X) Conversion -> Two’s Complement

Method 1  If X < 0, (~(U2B(|X|)))+1 

If X = -14 (and 8 bit binary #s)

1. |X| => |-14| = 

2. U2B(14) =>

3. ~(000011102) =>

4. (111100012)+1 => 

Binary addition:

11110001

+ 00000001

Method 2    If X < 0, U2B(X + 2w)

If X = -14 (and 8 bit binary #s)

1. X + 2w => -14 +          

2. U2B(242) =>

Using subtraction:
242 – 128 = 114 -> 1 x 27

114 – 64 = 50 -> 1 x 26

50 – 32 = 18       -> 1 x 25

18 – 16 = 2         -> 1 x 24

2 – 8 -> nop!    -> 0 x 23

2 – 4 -> nop!    -> 0 x 22

2 – 2 = 0 -> 1 x 21

0 – 1 -> nop!    -> 0 x 20

Examples of “Show your work”

w = 8

Check:
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Properties of unsigned & signed conversions

 Equivalence

Both encoding schemes (B2U 

and B2T ) produce the same bit 

patterns for nonnegative values

 Uniqueness

Every bit pattern produced by 

these encoding schemes (B2U 

and B2T ) represents a unique 

(and exact) integer value

Each representable integer has 

unique bit pattern

X B2T(X)B2U(X)

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

–88

–79

–610

–511

–412

–313

–214

–115

1000

1001

1010

1011

1100

1101

1110

1111

0

1

2

3

4

5

6

7

w = 4
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Converting between signed & unsigned 
of same size (same data type)

 Conclusion - Converting between unsigned and signed numbers:
Both have same bit pattern, however, this bit pattern may be interpreted 

differently, i.e., producing a different value

U2T

U2B B2T

Signed (Two’s Complement)Unsigned

Maintain Same Bit Pattern

ux x
X

T2U

T2B B2U

Unsigned

Maintain Same Bit Pattern

x ux
X

Signed (Two’s Complement)

w = 4

w = 8

If ux = 12910

If x = -510

then x = 

then ux = 
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Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

- 16 (+24)

Converting signed  unsigned with w = 4
Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

+ 16  (+24)

U2T(X)

T2U(X)

T2U(X)

U2T(X)
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0

TMax

TMin

–1

–2

0

UMax

UMax – 1

TMax

TMax + 1

Signed 
(2’s Complement) 

Range

Unsigned
Range

Visualizing the relationship between 

signed & unsigned

If w = 4, 24 = 16
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Sign extension

• • •X

X  • • • • • •

• • •

 Converting unsigned (or signed) of different sizes (different data types)

1. Small data type -> larger 

 Sign extension

Unsigned: zero extension

Signed: sign bit extension

 Conclusion: Value unchanged

 Let’s try:

Going from a data type that has a width of 3 bits (w = 3) to a data type 
that has a width of 5 bits (w = 5) 

 Unsigned: X = 3   =>      0112 w = 3 X = 4   =>     1002 w = 3

new X =  <= w = 5        new X =     <= w = 5                                   

 Signed:     X = 3 =>      0112 w = 3                 X = -3  =>     1012 w = 3 

new X =     <= w = 5        new X =      <= w = 5 

Sign bit
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Truncation

 Converting unsigned (or signed) of different sizes(different data types)

2. Large data type -> smaller

 Truncation

 Conclusion: Value may be altered

A form of overflow

 Let’s try:

Going from a data type that has a width of 5 bits (w = 5) to a data type 
that has a width of 3 bits (w = 3) 

 Unsigned: X = 27  => 110112 w = 5

new X =     <= w = 3         

 Signed:     X = -15 => 100012 w = 5                X = -1  =>  111112 w = 5 

new X =       <= w = 3       new X =      <= w = 3

• • •

X

X 

• • • • • •
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Summary
 Interpretation of bit pattern B into either unsigned value U or signed value T

 B2U(X) and U2B(X) encoding schemes (conversion)

 B2T(X) and T2B(X) encoding schemes (conversion)

 Signed value expressed as two’s complement => T

 Conversions from unsigned <-> signed values

 U2T(X) and T2U(X) => adding or subtracting 2w

 Implication in C: when converting (implicitly via promotion and explicitly via casting):

 Sign:

 Unsigned <-> signed (of same size) -> Both have same bit pattern, however, this bit pattern may 
be interpreted differently

 Can have unexpected effects -> producing a different value

 Size:

 Small -> large (for signed, e.g., short to int and for unsigned, e.g., unsigned short to unsigned int)

 sign extension: For unsigned -> zeros extension, for signed -> sign bit extension

 Both yield expected result –> resulting value unchanged

 Large -> small (e.g., unsigned int to unsigned short)

 truncation: Unsigned/signed -> most significant bits are truncated (discarded)

 May not yield expected results -> original value may be altered

 Both (sign and size): 1) size conversion is first done then 2) sign conversion is done18



Next Lecture

 Representing data in memory – Most of this is review

 “Under the Hood” - Von Neumann architecture

 Bits and bytes in memory 

 How to diagram memory -> Used in this course and other references

 How to represent series of bits -> In binary, in hexadecimal (conversion)

 What kind of information (data) do series of bits represent -> Encoding scheme

 Order of bytes in memory -> Endian

 Bit manipulation – bitwise operations

 Boolean algebra + Shifting

 Representing integral numbers in memory

 Unsigned and signed

 Converting, expanding and truncating

 Arithmetic operations

 Representing real numbers in memory

 IEEE floating point representation

 Floating point in C – casting, rounding, addition, …
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