CMPT 295

Unit - Data Representation
Lecture 3 — Representing integral numbers in memory - unsigned and signed

Last Lecture

= Von Neumann architecture
» Architecture of most computers
= [|fs components: CPU, memory, input and ouput, bus
» One of ifs characteristics: Data and code (programs) both stored in memory

®» A look at memory: defined byte-addressable memory, diagram of (compressed) memory

= Word size (w): size of a series of bits (or bit vector) we manipulate, also size of machine words
(see Section 2.1.2)

= A |look at bits in memory
= Why binary numeral system (0 and 1 -> two values) is used to represent information in memory

= Algorithm for converting binary to hexadecimal (hex)
1. Partition bit vector into groups of 4 bits, starting from right, i.e., least significant byte (LSB)
® |f most significant “byte” (MSB) does not have 8 bits, pad it: add O’s to its left
2. Translate each group of 4 bits into its hex value

= What do bits represent? Encoding scheme gives meaning to bits

= QOrder of bytes in memory: little endian versus big endian
= Drderot by Y , S NOTE:)
= Bit manipulation —regardless of what bit vectors represent C logical operators
= Boolean algebra: bitwise operations => AND (&), OR (1), XOR (*), NOT (~) and C bitwise (bit-level)
» Shift operations: left shift, right logical shift and right arithmetic shift operofors behave
2 = Logical shift: Fill x with y O's on left differently!
= Arithmetic shift: Fill x with y copies of x's sign bit on left Watch out for && versus

= Sign bit: Most significant bit (MSb) before shifting occurred &, || versus |, ... /

Today's Menu

» Representing integral numbers in memory
= Unsigned and signed
= Converting, expanding and truncating

Warm up exercise!

As a warm up exercise, fill in the blanks!

= |f the context is C (on our farget machine)
®char => __ bits/___ byte
®» short => _ bits/ __ bytes
™ int => _ bits/___ bytes
®»long => __ bits/___ bytes
®float => _ bits/__ bytes
®» double=> _ bits/__ bytes

®»polinter (e.g. char *)

4 => __ bits/___ bytes

Let’s apply the encoding scheme:

w-1 ‘
RUX) = Y2
i=0

OX27+ 1T X204+ 1 X224+0Xx24+Tx22+0x22+0x2'+1x20 =

» For w = 8, range of possible unsigned values: |

» For any w, range of possible unsigned values: |

Remember: pddress M[]
Unsigned infegral numbers anvs T ro oDt
/ » What if the byte at M[0x0002] represented an unsigned integral
AsenesotBls |_number, what would be its value®? _
= o VSOl w=>YV|dTh of
_ O]]O]OO]Q W=8 ghebl’rvec’ror

®» Conclusion: w bits can only represent a fixed # of possible values,
but these w bits represent these values exactly

B2U(X) Conversion (Encoding scheme)

» Positional notation: expand and sum all terms

10 2!
10i-1 2i-1
100 4
[I} 10 o 06 o 2
di |dii1| ®ee | d> | d1| do bi |bi-1| *** | b2 | b1 | bo
w—1 .
Example: @0=2x102+4x10]+6x100 B2U(X) = x; -2
L I's =109 i=0
6 10's =10’

100’s= 102

Range of possible values?

®» |f the context is C (on our fargef machine)

®unsigned char?
®unsigned short?

®unsigned int@?

®unsigned long@?

Examples of “Show your work”

U2B(X) Conversion (into 8-bit binary # => w = 8)

Method 1 - Using subtraction:
subtracting decreasing
power of 2 untilreach O

246 =>246-128=118 ->128=1x2’
118— 64=54 > 64=1x2¢
54— 32=22 > 32=1x2°
22— 16=6 > 16=1x24
6 - 8=nop! > 8=0x28
6 — 4 =2 > 4 =1x22
2— 2=0 > 2=1x2
O- T=nop! >1=0x20

246=>11110110,

Method 2 - Using division:
dividing by 2
untilreach O

246 =>246/2=123 > R=0
123/2 =61 -> R=1
61/2 =30 > R=1
30/2 =15 ->R=0
15/2 =7 ->R=1

7/2 =3 >R=1

3/2=1 ->R=1

1/2 =0 ->R=1
246=>11110110,

U2B(X) Conversion — A few tricks

» Decimal -> binary

» Trick: When decimal numberis 2", then its binary representation is 1 followed
by nzero’s

» | ef'stry: if X=32=>X=2°,thenn=5=>10000, (w=2>5)
What if w=82

Check: 1 x24=232

» Decimal -> hex

= Trick: When decimal number is 2", then its hexadecimal representation is 2!
followed by jzero's, where n =i+ 4 and 0 <=1 <=3

letfry:if X=8192=>X=213,thenn=13and 13 =i+4j=>1+4x3
=> 0x2000

Convert 0x2000 into a binary number:
Check: 2x 163 =2 x 4096 = 8192

Remember; Addes M[]

sizejl

[} [])
Signed infegral numbers oo T
0x0001] 011107100
oxooool 01110011

» What if the byte at M[0x0001] represented a signed integral
number, what would be its value?(; _; 1we's complement Lw=>widfh of

»x —]]]]O]OOQ W=8 V/ _’rhebl’rvec’ror
» Let's apply the encoding scheme: [B2I(X) = - w—;‘zw_lﬁ Z(:)xi-Zi
Sign bit
SIX27+ T X220+ T X229+ T Xx22+0x22+1x22+0x2'+0x20 =
» What would be the bit pattern of the ...

= Most negative value:

= Most positive value:

v

w—2

® For w= 8, range of possible signed values: |]

® For any w, range of possible signed values: |]
= Conclusion: same as for unsigned integral numbers

Examples of “Show your work”
T2B(X) Conversion -> Two's Complement

w=8
Method T If X <0, (~(U2B(|X])))+1 Method 2 If X <0, U2B(X + 2%)
f X =-14 (and 8 bit binary #:s) fX=-14 (and 8 bit binary #:s)
1. |X]| =>|-14] = Lo X+2¥=>-14+
- _ Using subtraction:
3. ~(00001110,) => 242-128=114->1x27
4. (11110001,)+1 => 114-64=50 ->1x2¢
. . 50-32=18 > 1 x2°
Binary addifion: 18- 16 =2 > 1 x 24
11110001 2-8->nop! ->0x23
+ 00000001 2-4->nop! ->0x22
2-2=0 > 1 x2!
O-1->nop! ->0x20
11

Check:

Properties of unsigned & signed conversions

X
0000

B2U(X

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

e
Slole|lo|N]o|lulslwINn|R|O

1100

=
N

1101

=
w

1110

=
IS

1111

=
(92

= Equivalence

» Both encoding schemes (B2U

and B2T) produce the same bit
patterns for nonnegative values

» Unigueness

® Fvery bit pattern produced by
these encoding schemes (B2U
and B2T) represents a unique
(and exact) integer value

» Fach representable integer has
unique bit pattern

Converting between signed & unsigned
of same size (same data type)

Unsigned U2T Signed (Two’s Complement)
=8 ux =UZBT> B2T > *
It ux =]2910 Maintain Same Bit Pattern then x =
Signéd (Two’s Complement) T2U Unsigned
- X | T2B Sl B2U > ux
If x=-5, then ux =

Maintain Same Bit Pattern

®» Conclusion - Converting between unsigned and signed numbers:
Both have same bit pattern, however, this bit pattern may be interpreted
differently, i.e., producing a different value

Converting signed « unsigned with w = 4

Signed

+16 (+24)

U2T(X)

Bits

0000

0010

0011

0101

0110

0111

1000

1001

1010

1011

1101

1110

1111

0001 TZUQXZ
U2T§X2 0100

T2U(X

1100 -16 ‘+242

Unsigned

o

W |JdjoonjOn|ddx|fWIN|RK

[
o

=
=

=
N

=
w

[}
[

=
8]

Visualizing the relationship between
signed & unsigned

fw=4,6,24=16

Signed
(2’s Complement)
Range

UMax
UMax -1

TMax +1

TMin

Unsigned
Range

Sign extension

» Converting unsigned (or signed) of different sizes (different data types)

1. Small data type -> larger | Sign bit
= Sign extension % —

» Unsigned: zero extension
= Signed: sign bit extension
» Conclusion: Value unchanged 11
» | et's fry: X'

» Going from a data type that has a width of 3 bits (w = 3) to a data type
that has a width of 5 bits (w = 5)

» Unsigned: x =3 => 011, w=3 X =4 = 100, w=3
new x = <= w=20 new x = <= w=20
» Sighed: x =3 => 0ll, w=3 x=-3=> 101, w=3
new x = <= w=20 new x = <= w=23

Truncation

2. Large data type -> smaller
= Truncation

» A form of overflow
= [et's fry:

that has a width of 3 bits (w = 3)

» Unsigned: x =27 => 11011, w=5
new x = <= w=23
= Signed: =-15=> 10001, w=25
new x = <= w=23

» Converting unsigned (or signed) of different sizes(different data types)

X LLleee] J |11

» Conclusion: Value may be altered

v v
X'

A 4 v v

» Going from a data type that has a width of § bits (w=5) to a data type

Summary

= |nferpretation of bif pattern B into either unsigned value U or signed value T
= B2U(X) and U2B(X) encoding schemes (conversion)
= B2T(X) and T2B(X) encoding schemes (conversion)
= Signed value expressed as two's complement =>T
= Conversions from unsigned <-> signed values
= U2T(X) and T2U(X) => adding or subtracting 2%
= |mplication in C: when converting (implicitly via promotion and explicitly via casting):
= Sign:

= Unsigned <->signed (of same size) -> Both have same bit pattern, however, this bit pattern may
be interpreted differently

= Can have unexpected effects -> producing a different value

» Size:
= Small -> large (for signed, e.g., short o int and for unsigned, e.g., unsigned short O unsigned int)
® sign extension: For unsigned -> zeros extension, for signed -> sign bit extension
= Both yield expected result —> resulting value unchanged
» |Large ->small (e.g., unsigned int tO unsigned short)
®» fruncation: Unsigned/signed -> most significant bits are tfruncated (discarded)
= May not yield expected results -> original value may be altered

18 = Both (sign and size): 1) size conversion is first done then 2) sign conversion is done

Next Lecture

= Representing integral numbers in memory

» Arithmetic operations

