
1

CMPT 295
Unit - Data Representation

Lecture 2 – Representing data in memory

Textbook

Chapter 2

CAL Volunteer Note-Taker Position

 If you are taking lecture notes in CMPT 295 and your hand writing is

you may be interested in applying for the following volunteer

note-taker position:

 The Centre for Accessible Learning (CAL) is looking for a CMPT 295 note-

taker

 CAL volunteer lecture note-takers are provided with a $100 credit

applied to their student account in acknowledgment of their assistance

 Interested?

 Please see the email CAL has sent us

 Please feel free to call 778-782-3112 or email calexams@sfu.ca the Centre if

you have any questions2

mailto:calexams@sfu.ca

Last Lecture

 COVID Protocol

 What is CMPT 295?

 What shall we learn in CMPT 295?

 What should we already know?

 Which resources do we have to help us learn all this?

 Activity

 Questions

3

Feedback on Lecture 1 Activity

 Thank you for participating in the Lecture 1 Activity!

 Feedback now posted on our course web site

Check it out!

4

Unit Objectives

 Understand how a computer represents (encodes) data in

(fixed-size) memory

 Become aware of the impact this fixed size has on …

 Range of values represented in memory

 Results of arithmetic operations

 Become aware of ...

 How one data type is converted to another

 And the impact this conversion has on the values

 Bottom Line: allow software developers to write more reliable code5

Today’s Menu

 Representing data in memory – Most of this is review

 “Under the Hood” - Von Neumann architecture

 Bits and bytes in memory

 How to diagram memory -> Used in this course and other references

 How to represent series of bits -> In binary, in hexadecimal (conversion)

 What kind of information (data) do series of bits represent -> Encoding scheme

 Order of bytes in memory -> Endian

 Bit manipulation – bitwise operations

 Boolean algebra + Shifting

 Representing integral numbers in memory

 Unsigned and signed

 Converting, expanding and truncating

 Arithmetic operations

 Representing real numbers in memory

 IEEE floating point representation

 Floating point in C – casting, rounding, addition, …

6

“Under the hood” -

Von Neumann architecture Architecture of

most computers

Its features:

 CPU, memory,

input and ouput, bus

 Data and instructions

(code/programs)

both stored in memory

7

How to diagram memory

 Seen as a linear (contiguous) array of bytes

 1 byte (8 bits) smallest addressable unit of
memory

 Each byte has a unique address

 Byte-addressable memory

 Computer reads a word worth of bits at a
time (=> word size)

 Questions:

1. If word size is 8, how many bytes are read
at a time from memory?

Answer: _________________

2. If a computer can read 4 bytes at a time, its
word size is _________________ .

M[]

size−1

0x0000

.
.

.

0x0001

0x0002

0x0003

0x0004

0x0005

0x0006

0x0007

0x0008

Address

8

Closer look at memory

 Typically, in a diagram, we

represent memory (memory

content) as a series of memory

“cells” (or bits) in which one of

two possible values (‘0’ and ‘1’)

is stored

0 1 0 0 0 0 0 0

M[]

size−1

0x0000

.
.

.

0x0001

0x0002

0x0003

0x0004

0x0005

0x0006

0x0007

0x0008

Address

9

Compressed view of memory

M[]

.
.

.

0x0000

0x0008

0x0010

0x0018

0x0001

0x0002

0x0003

0x0004 0x0007

0x0005

0x0006

size−8

Address

M[]

size−1

0x0000

.
.

.

0x0001

0x0002

0x0003

0x0004

0x0005

0x0006

0x0007

0x0008

Address

10

Why can only two possible values

be stored in a memory “cell”?
 As electronic machines, computers use two voltage levels

 Transmitted on noisy wires -> value of two voltage levels vary over a range

 These ranges are abstracted using “0” and “1”

 Back to the question Why can only two possible values be stored in a
memory “cell”?

 Because computers manipulate two-valued information

0.0V

0.2V

0.9V

1.1V

0 1 0

11

A bit of history

ENIAC: Electronic Numerical Integrator And Calculator

 U. Penn by Eckert + Mauchly (1946)

 Data: 20 × 10-digit regs

+ ~18,000 vacuum tubes

 To code: manually set switches

and plugged cables

 Debugging was manual

 No method to save program

for later use

 Separated code from

the data

Source: https://en.wikipedia.org/wiki/ENIAC#/media/File:ENIAC_Penn1.jpg

12

https://en.wikipedia.org/wiki/ENIAC#/media/File:Eniac.jpg

Back to our bits

How to represent series of bits

 From binary numeral system

 Base: 2

 Bit values: 0 and 1

 Possible bit patterns in a byte: 000000002 to 111111112

 Drawback of manipulating binary numbers?

What number is this?

 1001100 11001001 01000101 010010002

Lengthy to write -> not very compact

Difficult to read

Error prone!

Review

13

A solution: hexadecimal numbers

 Base: 16

 Values: 0, 1, 2, …, 9, A, B, C, D, E, F

 Possible patterns in a byte: 0016 to FF16

 Conversion binary -> hex

e.g.: 1001100 11001001 01000101 010010002

 Conversion hex -> binary

e.g.: 3D5F16 (in C: 0x3D5F)

Decimal Binary Hexadecimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

Review

14

What could these 32 bits represent?

What kind of information could they encode?

0 1 1 0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0 1 1 1 0 0 1 12

Answer:

15

What kind of information (data) do

series of bits represent?

• ASCII character

• Unsigned integer

• Two’s complement

(signed) integer

• Floating point

• Memory Address

• Assembly language

• RGB

• MP3

• …

Encoding Scheme

Bit pattern

• Letters and symbols

• Positive numbers

• Negative numbers

• Real numbers

• C pointers

• Machine-level instructions

• Colour

• Audio/Sound

• …

Definition: An encoding scheme is an interpretation (representation) of a series of bits

0 1 1 0 0 0 1 0 0 1 1 0 1 0 0 1

0 1 1 1 0 1 0 0 0 1 1 1 0 0 1 12

Bottom line: Which encoding scheme is used to interpret a series of bits depends on

the application currently executing (the “context”) not the computer

16

Endian – Order of bytes in memory

 It is straight forward to store a byte in memory

All we need is the byte (series of bits) and a memory address

For example, let’s store byte 0 1 1 1 0 0 1 12 at address 0x0000

M[]

.
.
.

0x0000

0x0001

0x0002

0x0003

size−1

Address

17

Endian – Order of bytes in memory

Question: But how do we store several bytes in memory?

For example, let’s store these 4 bytes starting at address 0x0000

01000010 01101001 01110100 011100112

Answer:

M[]

.
.
.

Way 1: Little endian Way 2: Big endian

M[]

.
.
.

0x0000

0x0001

0x0002

0x0003

0x0000

0x0001

0x0002

0x0003

0 1 1 1 0 0 1 1

0 1 1 1 0 0 1 1

0 1 1 1 0 1 0 0

0 1 1 0 1 0 0 1

0 1 0 0 0 0 1 0

0 1 1 0 1 0 0 1

0 1 0 0 0 0 1 0

0 1 1 1 0 1 0 0

size−1

Address
size−1

Address

in hex: in hex:

.
.
.

Address size−1 size−1

0x0000

0x0008

0x0000

0x0008
18

Compressed

view of memory

Bit Manipulation - Boolean algebra

 Developed by George Boole in 19th Century

 Algebraic representation of logic

Encode “True” as 1 and “False” as 0

 AND -> A&B = 1 when both A=1 and B=1 OR -> A|B = 1 when either A=1 or B=1

 NOT -> ~A = 1 when A=0 XOR (Exclusive-Or) -> A^B = 1 when

either A=1 or B=1,

but not both

ReviewNo matter what

a series of bits

represent, they

can be

manipulated

using bit-level

operations:
- Boolean algebra
- Shifting

19

Interesting fact

about Boolean algebra and digital logic

Claude Shannon – 1937 master’s thesis

Made connection between Boolean algebra and digital

logic

 Boolean algebra could be applied to design and analysis of digital

systems (digital circuits)

 Example: high

1

0

low

high

0

digital circuit

=> we can describe it as an AND gate20

Let’s try some Boolean algebra!

Operations applied bitwise -> to each bit

 Spot the error(s):

011010012
& 010101012

01000001

011010012
| 010101012

01111101

011010012
^ 010101012

00111100

~ 010101012
10101010

Review

010000012 011111012 001111102 101010102

21

Useful bit manipulations

 Using a binary mask (or bit mask) as an operand

1. AND: Extracts particular bit(s) so we can test whether they are set

Example: 101100112 <- some value x

& 000000012 <- binary mask

000000012

2. XOR: Toggle specific bits

Example: 101100112 <- some value x

^ 000111002 <- binary mask

101011112

 Using two operands

1. OR: Merge all set bits of operands

Example: 101100112 <- some value x

| 000111002 <- some value y

101111112

The result tells us that the least significant bit (LSb) of x is set

We get a toggled version of the 3 original bits (of x) that

correspond to the 3 set bits of the binary mask

i.e., set to 1

The result contains all the set bits of x and y
22

Bit Manipulation - Shift operations

 Left Shift: x << y

Shift bit vector x left

y positions

Effect:

Throw away y most

significant bits (MSb) of x

on left

Fill x with y 0’s on right

 LSb: least significant bit is the rightmost bit

of a series of bits (or bit vector)

 MSb: most significant bit is the leftmost bit

of a series of bits (or bit vector)

a series of bits

 Right Shift: x >> y

Shift bit vector x right

y positions

Effect:

Throw away y least significant

bits (LSb) of x on right

Logical shift: Fill x with y 0’s on left

Arithmetic shift: Fill x with y copies

of x‘s sign bit on left

Sign bit: most significant bit (MSb)
of x (before shifting occurred)

23

Bit Manipulation - Shift operations – Let’s try!

 Left Shift: 101110012 << 4

 Left Shift: 101110012 << 2

 Right Shift: 001110012 >> 4

 Right Shift: 101110012 >> 4

 Right Shift: 101110012 >> 2

logical

arithmetic

logical and arithmetic

24

Summary

 Von Neumann architecture

 Architecture of most computers

 Its components: CPU, memory, input and ouput, bus

 One of its characteristics: Data and code (programs) both stored in memory

 A look at memory: defined byte-addressable memory, diagram of (compressed) memory

 Word size (w): size of a series of bits (or bit vector) we manipulate, also size of machine words
(see Section 2.1.2)

 A look at bits in memory

 Why binary numeral system (0 and 1 -> two values) is used to represent information in memory

 Algorithm for converting binary to hexadecimal (hex)
1. Partition bit vector into groups of 4 bits, starting from right, i.e., least significant byte (LSB)

 If most significant “byte” (MSB) does not have 8 bits, pad it: add 0’s to its left
2. Translate each group of 4 bits into its hex value

 What do bits represent? Encoding scheme gives meaning to bits

 Order of bytes in memory: little endian versus big endian

 Bit manipulation – regardless of what bit vectors represent

 Boolean algebra: bitwise operations => AND (&), OR (|), XOR (^), NOT (~)

 Shift operations: left shift, right logical shift and right arithmetic shift

 Logical shift: Fill x with y 0’s on left

 Arithmetic shift: Fill x with y copies of x‘s sign bit on left

 Sign bit: Most significant bit (MSb) before shifting occurred

NOTE:
C logical operators

and C bitwise (bit-level)

operators behave

differently!
Watch out for && versus

&, || versus |, …

25

Next Lecture

 Representing data in memory – Most of this is review

 “Under the Hood” - Von Neumann architecture

 Bits and bytes in memory

 How to diagram memory -> Used in this course and other references

 How to represent series of bits -> In binary, in hexadecimal (conversion)

 What kind of information (data) do series of bits represent -> Encoding scheme

 Order of bytes in memory -> Endian

 Bit manipulation – bitwise operations

 Boolean algebra + Shifting

 Representing integral numbers in memory

 Unsigned and signed

 Converting, expanding and truncating

 Arithmetic operations

 Representing real numbers in memory

 IEEE floating point representation

 Floating point in C – casting, rounding, addition, …

26

