16-Hash Tables.

Bit Vector Review

- Suppose we want to store a set $S \subseteq[0, d]$, for some $d \in \mathbb{N}$ - A bit rector representation of S is a Boolean array B of size $d+1$ s.t $B[i] \Leftrightarrow i \in S$,
or $S=\{0 \leqslant i \leqslant d: B[i]$ is true $\}$
Eg. $d=20, S=\{3,7,9\}$:

- Operations member (x), insert (x), remove (x) are all $O(1)$.
- Only practical where d is small
- Space inefficient if $|s| \ll d$
- Copy, Union, Intersection all $\theta(c)$

Hash Functions

- A hash function for a set D is a function $h: D \rightarrow M$ where $|M|<|D|$, ie a map to a smaller set.
Eg $h:[0, \operatorname{MaXINT}] \rightarrow[0,12], h(x)=x \bmod 13$ ($|M 1=13,|D|=2,147,483,647$)
- There will be values $x, y \in D$ st. $w \neq y$ but $h(x)=h(y)$.
- Notation: Define $h(S)=\{y: y=f(x)$ and $x \in S\}$

$$
\begin{aligned}
& \text { Eg } h(3)=3 ; h(7)=7 ; h(13)=0 ; h(15)=2 ; h(20)=7 \\
& h(\{3,7,13,15,20\})=\{0,2,3,7\}
\end{aligned}
$$

- If $h(x)=h(y)$ for $x, y \in S$, we call it a collision (e.g 3,15)
- We will want hash functions h sit.
$-\operatorname{ran} h=[0, m-1]$ for $m \in N$ (array indices)
- h tends to distribute S uniformly over [0,m-1]
- $m=|M|$ will be prime

Hash Function + Bit Vector

- Let $h: D \rightarrow[0, m-1], B$ a Boolean array of size m
- For a set $S \subseteq D$, set
$B[i]=$ true ff there is $x \in D$ st. $h(x)=i$
or $\{i: B[i]\}=h(S)$
Eg:

$$
\begin{aligned}
& S=\{3,7,13,15,20\} \\
& h(x)=x \bmod 13 ; m=13 \\
& h(s)=\{0,2,3,7\} \\
& B=\text { 110111.1.0.11.10.न.0 } \\
& \text { now: }\{x: B[h(x)]\}=\{0,2,3,7,13,15,19,25,27,31, \ldots\} \\
& \text { - } B[h(x)]=1 \text { "suggests } x \in S^{4} \\
& \text { - } B[h(x)]=0 \text { implies } x \neq 5 \text {. }
\end{aligned}
$$

eg. there may be false positives but never false negatives.

Bloom Filters

- Let $H=\left\{h_{1}, h_{2}, \ldots h_{k}\right\}$ be a set of distinct hash functions for a set D, each with range $[0, m-1]$.
- For $S \subseteq D_{1}$ set $B[i]=$ true if $h(x)=i$ for some $h \in H$; $B[i]$ false ow.
- To test for membership in S :
- if $B[h(x)]=$ true for all $h \in b$, return true - ow. return false.
- We gat a false positive only when $h(x)$ is a collision for every $h \in H$.
- B is a Bloom Fitter for S
- If m is large enough relative to $|s|$ and the h_{i} are good quality, independent hash functions, then there will be few false positives

Hash Tables

- Let $h: D \rightarrow M$ be a hash function for D with $M=[0, m-1]$
- Let A be an array of size $|M|$ and type $D \cup\{-\}$

$$
A: M \rightarrow D \cup\{-\}
$$

- For a set $S \subseteq D$, we want
$A[h(x)]=x$, for each $x \in S$
$A[i]=$ - if $h(x) \neq i$ for every $x \in S$.
Eg: $S=\{2,12,17,21\}, h(x)=-x \bmod 13$

$$
\begin{aligned}
& h(\delta)=\{2,12,4,8\} \\
& A=-|-|2|-|17|-|-|-|21|-1-112|
\end{aligned}
$$

- To check membership in S, return $A[h(x)]$.
- A is a hash table for S
- But what if we have collisions?
- Need collision handling. We will look at a few methods.

Hashing with Separate Chaining

- Let A be a size. M array of linked Lists
- Set $A[i]$ to be a list of the elements $\{x \in S: h(x)=i\}$.
- To test for membership in S :
- Return true iff x is in the list $A[n(x)]$

Eg $S=\{1,5,7,13,18,20\}$

$$
h(x)=x \bmod 13
$$

- To insent/remove x : insert/remove x from $A[h(x)]$.
- If h distributes S almost uniformly over M, the lists will be small, and time will be essentially $O(1)$.
- In the worst case, some lists have length $\Omega(n)$ and performance degrades to that of linked lists: $\Omega(n)$.

Hashing with Probing. (Open Addressing)

- Let A be an array of size M and type $D \cup\{-\}$, f a hash function $h: D \rightarrow[0, m-1]$
- Let f be a function $f: N \rightarrow N$, that has $f(0)=0$ and is monotone increasing (es. $x>y \Rightarrow f(x)>f(y))$
- Define, for $i \in \mathbb{N}, h_{i}(x)=(h(x)+f(i)) \bmod m$

$$
\begin{aligned}
& h(x)=x \bmod 13, f(i)=i \\
& h_{0}(3)=h(3)+0=3 \\
& h_{1}(3)=h(3)+1=4 \\
& h_{2}(3)=h(3)+2=5
\end{aligned}
$$

- To resolve collisions, probe the sequence of cells:

$$
A\left[h_{0}(x)\right], A\left[h_{1}(x)\right], A\left[h_{2}(x)\right], \ldots
$$

Hashing with Probing. (Open Addressing)

- $h_{i}(x)=(h(x)+f(i)) \bmod m$
. To check for membership of k :
- Examine the sequence of locations

$$
A\left[h_{0}(x)\right], A\left[h_{1}(x)\right], A\left[h_{2}(x)\right], \ldots
$$

- Stop at the first location containing x or 1 . return true if x was found, false otherwise.
- To insert x :
- Examine the sequence of locations

$$
A\left[h_{0}(x)\right], A\left[h_{1}(x)\right], A\left[h_{2}(x)\right] \ldots
$$

- Stop at the first location containing and store x there.
- Choice of $f()$ determines properties.

Hashing with Linear Probing

- Let $f(i)=i$
- The sequence of locations to probe is:

$$
A[h(x)], A[h(x)+1], A[h(x)+2], A[h(x)+3], \ldots(+i s \bmod m)
$$

Ex: Suppose $h(x)=x \bmod 13, S=\{2,9,18,36\}$ (so $h(s)=\{2,5,9,10\}$) and A is $-1-2 \mid-[181-1|-|9| 3|-1]$
-To insert 5: compute $h(5)=5$;
see that $A[5] \neq-$
see that $A[6]=-$, so set $A[b]=5$

- To check if $5 \in S$: compute $h(5)=5$;
see that $A[5] \neq-, A[5] \neq 5$
see that $A[6]=5$ and return true
-To check if $31 \in S$: Compute $h(31)=5$;
see that $A[5] \neq 31, A[5] \neq-$
see that $A[6] \neq 31, A[6] \neq-$
see that $A[T]=$ - and return false

Hashing with Quadratic Probing

- Let $f(i)=i^{2}$
-The sequence of locations to probe is:

$$
A[h(x)], A[h(x)+1], A[h(x)+4], A[h(x)+9], \ldots(+i s \bmod m)
$$

Ex: Suppose $h(x)=x \bmod 13, S=\{2,9,18,36\}$
(so $h(s)=\{2,5,9,10\}$) and A is $-1-2|-18|-1 /-19|3|-1]$

- To insert 35: compute $h(35)=9$
- see that $A[9] \neq$ -
- see that $A[10] \neq-$
see that $A[0]=$ - and store 35 there.
. Nos: A is -
- To check if $35 \in 5:$. compute $h(35)=9$
- see that $A[9] \neq, A[9] \neq 35$
- see that $A[10] \neq-, A[10] \neq 35$
. See that $A[0]=35$ and return true
- To check if $22 \in S$: compute $h(22)=9$
- see that $A[9], A[10], A[0], A[5]$ are not 22 or -
.see that $A[12]=$ - and return false

Double Hashing

- Let $f(i)=i \cdot$ hash $_{2}(x)$,
where hash $h_{2}(x)$ is a hash function for D that is different from h, and with ran (hash) $\subseteq[1, m]$
- The sequence of locations to probe is:

$$
\begin{aligned}
& \text { sequence of locations to probe is: } \\
& A[h(x)], A\left[h(x)+h a s h_{2}(x)\right], A\left[h(x)+2 \cdot \operatorname{asch}_{2}(x)\right],(+ \text { is } \bmod m)
\end{aligned}
$$

Ex: Suppose: $h(x)=x \bmod 13, \operatorname{hash}_{2}(x)=(7-(x \bmod 7))$

$$
S=\{2,9,18,36\} \text {, so } h(S)=\{2,5,9,10\}
$$

and A is $-1-12[-1-181-1-1-19|36|-1]$

- To insert 15: compute $h(x)=2$
- see that $A[2] \neq$ -
- compute hash $2(x)=6$
-see that $A[8]=$ - and store 15 there

- To check if $15 \in S$, check $A[2]$, then $A[8]$, and return trap
. To check if $10 \in S$: compute $h(10)=10$
- see that $A[10] \neq 10, A[10] \neq-$
- com pule hash $h_{2}(0)=4$
-see that $A[1]=-$ and return false

Removal with Open Addressing.

- Suppose we have a hash table H for a set S containing x, and want to remove x.
- If H uses separate chaining, we just delete x.
- If Huses open addressing, we cannot, because ix affects the probe sequence for other elements.
Ex: \cdot Suppose $h(x)=x \bmod 13, S=\{2,5,9,18,36\}$ and A was detained as in our Linear Probing example:

- Suppose we now delate 18, so

- Now, searching for 5 fails, because

$$
A[h(5)]=-1
$$

- One solution is to mark cells where we have deleted elements.

Removal with Open Addressing.
Ex: In the previous example, to remove 18 we replace it with d.:

Now, search \& insert procedures perform os if $A[5]$ has some kay that we will never use.

- To remove $x:$
- examine the sequence of locations

$$
A\left[n_{0}(x)\right], A\left[h_{1}(x)\right], A\left[h_{2}(x)\right], \ldots
$$

- when x is found, replace it with d
- Notice that search \& insect work correctly as they are
- Insert can be modified to reclaim space:

To insert x :-Examine the sequence of prob locations

- stop at the first one containing - or d and store x there.
-NB: In implementation, d and - could be special values, or A could be an array of objects or structs with "empty" and "deleted" variables/ fields.

Load Factor

- The loadfactor of a hash table H is:

$$
\lambda=\frac{(\# \text { of keys })+(\# \text { of elements marked } d)}{m}
$$

(If it uses separate chaining, there are no d's)

- Good performance requires λ not too large.
- For separate chaining: λ should not be much larger than 1, so average list length is about 1.
- For open addressing, want $\lambda<0.5$, so that it is not too hard to find a place to make an insertion.

Some Properties with Open Addressing.

- Linear Probing:
- Insertion always succeeds if $\lambda<1$
- Primary Clustering is a serious problem.
- Quadratic Probing:
- Avoids primary clustering
- Exhibits secondary clustering - but less problematic
- Insertion always succeeds if $\lambda \leqslant 0.5$, but may fail if $\lambda>0.5$ (even if there is space).
- Double Hashing:
- Requires design of a second suitable hash function
- Requires computing 2 hash functions whenever probing beyond $A\left[h_{0}(x)\right]$ is needed.

Rehashing

- Rehashing hash table it means constructing a completely now hash table for the contents of H.
- We may want to do it if:
- λ is too large (close to 0.5 for open addressing, much larger than 1 foe separate chaining)
- Performance has become poor
(which may result from clustering, from long Inked Lats, or from many removals)
- Takes time $\theta(n)$ under the assumption that insert is $\theta(1)$.

Hashing Properties

- Well-designed hash tables are effective in practice, with fast insert, member, remove operations
- Require a good hash function for the domain of application
- Operations $O(1)$ on average, under assumptions that may not hold in practice:
- all keys equally likey
- hash function distributes keys uniformly
- λ small
- Do not support operations based on order of keys, such as: enumerate in order
- min, max, range lockups
- union r intersection
(These are efficient with AVL Trees \& B-Trees).

End

