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BitVectorReview_
- Suppose we want to store a set SE Lad]

,
for some d c-☒

- A bitretor representation of 5 is a Boolean array B

of size dt 1 St Bhi] ⇐ i c-S,
or S = {0s is d : B [i] is true }

Eg. D= 20 , 5={31%9} :

B = 101510101011101110101010-171%1%4

• Operations member tx)
,
insert (a)

,
remove4) are all 04 ) .

. Only practical where d. is small

^ Space inefficient if 1st Kd

- Copy , Union, Intersection all ① (c)



Hasht-unctions.tt
hash function for a set D is a function h :D→M

where IM1E 1DI
,
ie a map to a smelter set.

Eg h:[0,MAXINT]→ [0,12] , h (x) = x mod 13

( Ital = 13 , ID 1=2,147,483,647)

- There will be values ix.yED st.cl#ybuthcx)--hly) .

- Notation : Define h(5) = { y :
y
= fix) and ✗ c- S }

Eg h (3) =3 ; h (7) = 7 ; h(133--0 ; HC15)=2j h(20) = 7

h({ 3,7 , 13 , 15,20 }) = {0,213,7 }
- If hlx)=hcy) for ix.YES , we call it a collision (e.g

3,15 )

- We will want hash functions h st .

- ran h = [0 , m- I] for me# ( array indices
)

- h tends to distribute S uniformly over [0 , m-I
- m = IM1 will be prime



ltasht-unctiowi-Bitvector-he.tk
:D → [0 ,m - I] , B a Boolean array

of size M

- For a set SED ,
set

B. Ii] = true iff there is ✗ C-D sit . hlx)=i

⇐ { i :B[it} = h(s)

Eg: S
= { 3,7 , 13,15 , 20 }

htx) = x mod 13 ; m= 13

h (s) = {0,2 . 3,7 }

B =Tlll=

now: {x : B[h(x)] } = {0,2 , 3,7 , 13 , 15 , 19,25 , 27,31, - -.}
-

. B[htx)] = I "

suggests at5
"

• B [hlx) ] = 0 implies v45 .

4- there may be false positives
but

never false negatives .



BloomFiHers_

. Let It = {hi , ha , . . .hi,} be a set
of distinct hash functions

for a set D ,
each with range Lam

- I]
.

- For S E D
,
set B Li] = true if hlx)=i for some HEH ;
B[i] = false o-w.

•To test for membership in S :

• if B [had] = true for all ht It, return true

• o -w. return false .

. We get a false positive only when
hlx) is a

collision for every HEH .

.B is a Bloomfield
. If M is large enough relative to 1st

and

the hi are good quality , independent hash
functions

,

then there will be few false positives



Hashtables-le.tk
:D →M be a hash function for D with M= [0,m-I]

- Let A be an array
of size 1141 and type D u {- }

¥ . A : M→ Du {-3

- For a set SED
,
we want

A [htx)] = x
,
for each ✗ ES

A [ i ] = - if hcx) =/ i for every ✗ ES .

Eg.:S = {2,12 , 17,21 } , htx) = x mod 13

h Is)={2.1.2 , 4,8 }
A =_t±É-t

-To check membership in S
,
return A[htx)]

.

- A is ahashtablefors-B.atwhat if we have collisions ?
>

- Need collisionhan-ding.ve will look at a few methods
.



Hashingwithseparatechaining.lt
A be a size-M array of linked lists

- Set A [it to be a list of the elements {✗ c-S : htx)=i }
.

- To test for membership in S :

- Return true iff x is in the list A [hlxl]

F⇒. 5={45,7171%20} A =t¥É¥!¥¥hlx) = x mod 13

T¥

-To insert/remove ex : insert/remove x from A[had] .
- If h distributes S almost uniformly over 114 , the lists will be
small

,
and time will be essentially 04) .

- In the worst case
, some lists have length h(n) and

performance degrades to that of linked lists :b (n) . i)
.



Hashingwithprobing-lopenn-ddressing.h.at
A be an array

of sizeM and type Du {-3 ,
f a hash function h :D → Lam

-]

• Let f be a function f : A→ ☒
,
that has flo)=o

and is monotone increasing leg. ix >y ⇒fix)
> fly))

•Define
,
for it H

, hi(x)=(htx)t)modm_
Ex. htx) = x mod 13

,
f- ( i ) = i

ho (3) = h (3) to = 3

h , (3) = h (3) + I = 4
hz( 3) = h (3) + 2 = 5

•To resolve collisions , probe the sequence of
cells. .

A[ 'how]
,
A [hit)]

,

A [ hz HI]
,

- - .



Hashingwithprobing-lopenn-ddressing.la
hitx)=(htx)tfmodm_
.Toeheckformembershipofx:_

• Examine the sequence
of locations

A- [how] , A[him] , A[hated] . . . .
• Stop at the first location containing ✗ or 1-

•
return true if ✗ was found

,
false otherwise .

-Toinser.tn/:-
• Examine the sequence

of locations

A- [how] , A[him] , A[hzl;D] . . .

• Stop at thefirst location containing -
and store ✗ there

.

• Choice of ft) determines properties .



Hashingwithhinearprobing-le.tk
i ) = i

- The sequence of locations to probe is :

A Lhlx)]
,
A [htx)t☐

,
A- Chintz]

,
A[hlx)t 3]

,
. . .

It is mod m )

E¥ - Suppose htx) = ✗ mod 13 , S={2,9 , 18,36 }
( so h Is> = { 25,910 }) and A is t.la#--H-TI
-To insert 5 : . compute h(5)=5 ;

-
see that A [5] =L -
- see that A (G) = -

,
so set A[63=5

- Now: A = I÷I÷ÉÉH

-To check if 5 c-S : . compute h(5)=5 ;
•
see that A [5] =L - , AC5] =/ 5

• seethat AL6] = 5 and return true

-To check if 31 C-S : .Compute h(313=5;
•see that AL5] =/ 31

,
A [5] =/ -

- see that A [6] =/ 31
,
A[6] =/-

- see that AE7] = - and return false



HashingwithQuadrat.cl?robing..Letfci)--i2
→The sequence of locations to probe is :

A [htx)]
,
A [hlx)t I]

,

A-[htx)+4]
,

A[hlx) +9]
,
. . .
( t is mod m )

Ex : Suppose htx) = ✗ mod 13 , S={2,9 , 18,36 }
( so h Is> = { 2.5,910 }) and A is¥HEI
-To insert 35: - compute h(351=9

. see that AL9] =/ -
• see that AG0) =/

-

• see that AL0] = - and store 35 there .
-Now : A is t~H-H-T.tt
-To check if 35ES : - compute h(351=9

. see that AL9] =/ - ,
A 193=135

• see that AG0) =/
- ,
AL10] ¥35

• see that AL0] = 35 and return true
•To check if 22 C- S : . compute h(223=9

• see that AL9]
,
AG0]

,

AH
,
AL5] are

not 22 or -

. see that AL12] =- and return false



Doubleltashing.he.tt/i)--ihashztx)
,

where hashzlx) is a hash function for D that is
different from h

,
and with ran ( hashz) E Li

,
m]

-The sequence of locations to probe is : ( t is mod m )
A[hlx)]

,
A[hlx) thashztx)]

,
A- [hlx)t 2. hashztx)] , . . .

TÉ Suppose :htx) = x mod 13 , hashzlx) = (7- (x mod 7))
S = {2,9 , 18,36 } , so h(D= { 2,5,9,10 }
and Ais-H~H-TI.TOinsert 15 : . compute hlx) = 2

• see that A [2] ¥ -
. compute hashe(x) = 6
- see that AL8] = - and store 15 there

-Now : A is l±ÉI÷
- To check if 15<-5 , checkAt]

,
then AE8]

,
andreturntrue

•To check if 10 C-5 :
.Compute h(to) = to
• see that AL10] =/ 10 , A 40] =/ -
• compute hashz(to) = 4
• see that A[ I] = - and return false



Remoralwithopen-Addressing-soppi.se
we have a hash table H for a set S containing x,

and want to remove x .

- If It uses separate chaining ,
we just delete ix.

- If It uses open addressing ,
we cannot

,
because

it affects the probe sequence for
other elements .

E¥ . Suppose htx) = x mod 13 , S={2, 5,9 , 18,36 }
and A was obtained as in our Linear Probing
example : A =

- Suppose we now delete 18 , so

A =¥ÉH÷I

• Now
, searching for 5 fails , because
A- [HL5)] =

-
!

- One solution is to ma_rk cells where we have deleted elements .



Removalwithopen-ddressing.EE
. In the previous example , to remove 18 we replace
it with d. :

A = t.tl#--H-Ts---I

Now
,
search & insert procedures perform as if AL5 ] has

some key that we will never use .
-Toremouex:_

• examine the sequence
of locations

A [how]
,
A [him]

,
A [hate)]

,
- . .

• when ✗ is found
, replace it with d.

- Notice that search ? insert work correctly as they are
- Insert can be modified to reclaim space :

To insert x : - Examine the sequence
of prob locations

- stop at the first one containing - or d
and store x there .

- NB : In implementation , d and - could be special values , or A could be an

array of objects or struts with
"

empty
" and "deleted" variables

./fields .



hoadt-actor-Theloadfa-t.rof a hash table H is .

'

(If It uses separate

y = (#ofkeys)+(#ofmelemsmarkedd) chaining , there
are no d 's )

- Good performance requires 7 not too large .

• For separate chaining : I should not be much larger
than 1

,
so average list length is about 1 .

• For open addressing , want A < 0.5 ,
so that it is not too

hard to find a place to make an
insertion .



somepropertieswithopenh-ddressinq.hinearprob.in#:
' Insertion always succeeds if A < I
•primary-stering.is a serious problem .

-

Quadratieprobing.in
Avoids primary clustering
- Exhibits secondary clustering - but less problematic
- Insertion alway succeeds if ✗ E 0.5 ,

but may
fail if A >0.5 (even if there is space) .

.DoubleHashing:_
. Requires design of a second suitable hash function
: Requires computing 2 hash functions whenever

"

probing beyond A[hotel] is needed .



Rehashing
- Rehashing hash table It means constructing a completely

new hash table for the contents of It .

- We
may want to do

it if :

- ✗ is too large ( close to 0.5 for open addressing ,

much larger than 1 for separate chairing )

- Performance has become poor
(which may result from clustering , from
long linked lists , or from many removals)

-Takes time D- (n) under the assumption that insert is D-( i)
.



Hashingpropertie.sn
Well -designed hash tables are effective in practice ,

with fast insert
,
member

,
remove operations

- Require a good hash function for the domain of application
- Operations 04 ) onarerage_ , under assumptions that

may not hold in practice :
- all keys equally likey
- hash function distributes keys uniformly
- A small

-Do not support operations based on order of keys ,
such as : . enumerate in order

. Min
,
Max

, range lookups
- Union r intersection

(These are efficient with AVL Trees & B-Trees )
.



End_


