
Priority Queue ! Heaps

priorityoueue-ADT-CPQI.SI
-

ores a collection of pairs (item , priority)

- Priorities are from some ordered set

(For simplicity ,we use priorities
from 0

, 1,2, . . . with 0
"

highest priority
"

)

- Main operations :

• insert (item
, priority)

adds item with priority priority
• extract

-

mint)

removes G.returns) item with least priority
• update (item , priority)
changes priority of item to priority

Rootedpsinarytreeterms
- prope = every node

has 0 or 2 children .

- perfect = proper B.T. where every
1
on 1 has the same death .

• We want a data structure to implement
efficient PQS

.

Eeg . 0(log n) time for all operations .

• We (again) will use a particular kind
of tree

. .

.

. . .ofordered-binry-rees.ir
is its each node of the tree once

• visits every node
at depth i before any

node at depth it1-
*

• visits every depth -d descendent of left G)
before any depth

-d descendent of right G) .

-⇐.EE/-n.
÷£¥⇐¥↳¥÷IÉ±ÉT

☒ in some texts
,
it is bottom - up ,

not top - down.

Rootedpsinarytreetevms
- prope = every node

has 0 or 2 children .

- perfect = proper BT. where every
tool has the same death .

☒ has 2 ** in the

(ompleteBinary children level - order
traversal

A complete binary tree of height h is
1. a binary tree of height h ;
2. with 2d nodes at depth d, for every 0 ←dah

3. level order traversal visits every internal node before any leaf

4.
every internal node is proper# except perhaps the last,**
which may have just a

left child.

T.LI↳ 5. ¥⇒ ¥-3 ¥& µ'

✗ (4) ✓ ✗ Its 4 ! > ✓ ✓
At

(4)
1) µ

✓

T.IE#gBsioN¥1s . A. No
III. Ibm's 1h 2h than
(3) ✗

(4) ☒ ✓

*
É

BinaryHeapDatatu_
- a complete binary tree]

shape invariant
"

- with vertices labelled by keys from
some ordered

set
,

Fpriorities

- sit . key (v) > key
(parent (D)}

"
order

invariant
"

for every node
V

-

Eg . µ_② ✗To③ ③
Yo
,

6- TO ↳ É ☒
⑥ 6 ✗

-This is the basic D.5. for implementing PQS
(Binary min - heap)

.
.

- How do we implement the operations so that

the invariants are maintained ?

• Consider Insertion:

If we want to insert

where should it go
?

to the heap .

Notice: there no choice about how the Shaye changes :

C. To A
✓b A d. A h.ms

•
I AM. t.bh.to

HeapInsert_
To insert an item with key K :

1. add a new leaf ✓ with keyG) = K , so as to
maintain the shape invariant

2. re- establish the order invariant by
executing percolate-up(r) .

percolate-upG) {
while (r is not root and keyhole key (parent (v1)) {

so

swap positions of v and parent G) in the tree

}
}

Insert-2.thenI.then-3into.f.RO
① to ☒ ⇒

①①

T-nsert-2.thenI.thenbinto.EE?*.o⇒ ÉÉÉ¥⑤
①① ①I ①⑥ ¥.

I

←%
☐ ⇐ * ⇐¥É¥¥ÉÉ÷

tleapF-xtract-Mini.net
smallest

Consider : f) 1

these .

s%Ét →q
KH
"

µ ⇒ ¥§
's one of

heap

we must replace the root with the smarter of its children :

ÉÉ⑦ 6¥ ?
↳

0K Not ok !

Heap Extract - Min .
=

To remove the (item with the) smallest key
from the heap :

1. remove the root

2. replace the root with the
"

last leaf
"

,

so as to maintain the shape invariant .

4. restore the order invariant by calling
percolate-down(root)

Percolate
-
down is more work than percolate-up ,

because it must look at both children

to see what to do (and the children

may or may not exist)

Heapreml
- remove the root
- fix the shape invariant by moving

the

" bottom right
"
or
" last " node to the root .

A.tl#-

percolate -down G){
while (✓ has a child c with key(c) < key G) {

c ← child of ✓ with the smallest key
among

the children of v.

swap ✓ and c in the tree

}

3

Notice that :
- ✓ may have 0,1 , or 2 children

. if v has 2 children , we care about

the one with the smallest key .

Doextract-min3times.IQ
⑥ ④
to ← ⑦

⇒

Doextract-mii.IE i 3€
% ⇒É←¥¥⇒ ⑦"

I
⑨
-

⇐ ①

①

lomplexityoflteap-T.nsert-Extract-mincla.im
: Insert & Extract - min take time 0(tog n)

for heaps of size n .

Recall: A perfect binary tree of height h has
2h"-1 nodes

.

1¥ By induction on h (or
"

the structure of the tree
")
.

B¥s : If h=o then we have 2°
"
-1=1 nodes . ✓

III. : Consider some
H70 and assume the perfect

binarytree of height
h has 2h"- I ↳ des.

I£ ! show the p .b.t .
of height ht1 has 21h""

"

-1 nodes s .

The tree is "

So it has 2h
"
- I + 2h"_ I + I = 2. 2h"- I = 2"

"""
- I nodey

Size bounds on complete binary trees
. Every complete binary tree with height hand n nodes
satisfies : 2h ← n ⇐ 2h" - I

-

smallest :

h¥.
I

P. but .
of

É height h- I

p.b.tv of height h .

nodes = 2(""+1-1+1 = 2h

So
,
we have : 2h En

log,2h
± logan

h E logan
h=0(logn)

⇒ Heap insert & extract min take time 0(log a)

linkedin.plemewtat.cn?fHeapurootis-#--µµ☐ "
last
"

É¥÷.

N¥ : TY¥43
para.tw

A-rray-BasedBinarylteap-tmplementatim-Use.co
this embedding of a complete binary tree

of site n in a size- n array :

←% ith node in

\④ ⇐ To level- order

⑥☒ ⑥ ① traversal

th H
ith array element-É

• Children of node i are nodes Zit I & 2 it 2

• Parent of node i is node KK1)/2)

"

Uses this embedding of a complete binary tree

"

";::::""of site n in a size- n array :

←% ith node in

\④ To level- order
traversal

th H
ith array element

•

ewa.in?#iEiiEas2iti&2i+2
• Parent of node i is node kit- 1)12]

iÉÉÉÉ☒
✗ Growing & Shrinking the tree is easy in the array embedding

partially-ftledArrayImplementationol-Binarylteap.fi

←% = tÉET
⑧
"
④ ⑥

Insert It

←% '

% ⑥
'

①

I

¥0 EEEI.EE
'

to ④'⑥

partially-ftledArrayImplementationol-Binarylteap.fi

←% = tÉFT
⑧
"
④ ⑥

±n¥ÉÉ¥÷ ¥É¥¥iE"
⑥ 6 I

¥0 EEEI.EE
'

to ④'⑥

Insert for Array- based Heap
. Variables : ar# ,

size

• Heap elements are in A fo] . .
A-[site -

insert(k){
A[site] ← K ;D Add K as the new ' last leaf '

v ← site

p ← Hv
- 1) 12J / p← parentA

white (✓ > ☐ and A "] < A↳5 "
"¥ '

swap ACv] and A [p]
✓ ← p

p← 4- 1) 12J

}

size← size t 1 ;

}

partially-ftledArrayImplementationol-Binarylteap.IExtr¥mih

←% = tÉET
% ⑥ ⑦

I

ÉÉ ETTÉE'

É'④
'

ÉÉ
④
' '
④

partially-ftledArrayImplementationol-Binarylteap.IExtr¥min

= ¥Éi;E
a ¥ I ;

;¥É¥⇒*Iv
a
¥

←%
④
' '
④

ÉI!¥iEi,forAiray-basedHe_
temp ← Alo] A record value to return
site ← size - I

AC0] ← A [size] ✗move old last leaf to root
i← 0

while (sit 1 < site){A while I not a a leaf
child← Zit 1 ✗ the left child of i

if (2 it 2 < size AND AGit 2] < A [2in]){

g.
child ← 2 it 211 use the right child if it exists""

"""

§down ✗ and has smaller key
if / A [child] < A [D) {✗ if order violated ,

swap A [ehild] and Ali] ✗ swap parent + child .
i ← child

} else {
return tempL . .

return temp .

Asmallspace-for-timetrade-off-inF-xtract-min-F-xtro.it
-min does many comparisons, eg (2i a size) to

check if i is a leaf
.

- Suppose we ensure the array
has size 7 2. size

and there is a big value, denoted a , that can be
stored in the array but

will never be a key .
and every array entry

that is not a key is a .

-Then
,
we can skip the explicit checks for

being a leaf .

Extract-minrariau.fi
has a childextract - mind {

temp ← A Co] A record value to return that is out of

site ← size - I
order

A lot ← A [size] ✗more old last leaf to root

A [size]←• ✗☒ *
i← 0

www.g.gg,,, ,g , qq.gg, ay, .gg
, qq.y.gg
µ

if I AL2it☐ < A i +2]){

down
swap At it☐ and

Ali]} it is the left chi d""
"""§ i. ← Zit I

5else {
swap A it 2] and Ali] } it is the right child
i ← Zit 2

}

L }
return temp

makingalteapfromase.to
Suppose you have n keys and want to make a heap with them .

•Clearly can be done in time 04 tog n) , with n inserts .

• Claim : the following alg . does it in time 0(a) .

make-heap (T) 5
AT is a complete but . with n keys .
for / i = 1%1-1 down to a){
call percolate- down on node i

}

3

Howdoesmake-heapwork.7.tn/2J-l
is the last internal node

- the algorithm does a percolate- down at each
internal node

, working bottom - up .

(percolate- down makes a tree into a heap
if the only node violating the order
property is the root)

÷⇐⇒÷.
I 8 9%10 11%12 IsMY
HAIRlast internal node

15 16 17 18 19 20

LM2] - I = KY21 - I = 9-

Howdoesmake-heapwork.2.tn/2J-l
is the last internal node

- the algorithm does a percolate- down at each
internal node

, working bottom - up .

I percolate- down makes a tree into a heap
if the only node violating the order
property is the root)

LM2] - I = KY21 - I = 9-

makeheapF-xample.EE
'

to
"

④

③
"

D= to ; V12]
- I = 4

Notice: The exact order of visiting nodes does not

matter - as long as we visit children
before parents .

[It follows that it is easy to do a recursive make-
'
heap]

makeheapF-xampleo.to#E*
✓ ⑤'¥É¥qµ

""
④8

µÉ② ①K9
7

D= 10 ; V12]
- I = 4

Notice: The exact order of visiting nodes does not

matter - as long as we visit children
before parents .

[It follows that it is easy to do a recursive make-
'
heap]

make-heaptomp-exity-e.CI
early 04 log n) : n percolate- down calls , each 040g n) .

• How can we see it is actually 0 (n) ?
•Intuition : mark a distinct edge forererypossibleswo.plTime taken is bounded by Max . # of swaps possible.)

X
X X
^^ ^ A
MAN ^^

Timelomplexityoftlakeheap
Let sln) be the Max number of swaps carried

out by make- heap on a set of size R .

We can bound sln) by :

h - I

Slnl I [2d (h - d)
d-- o b [The Max # of swaps for/ a call to percolate- down on

percolate - down] a node at depth d
is called

,
at most

,

"
there are

is h-d
on each node at 2d nodes
each depth d at depthd
from 0 to h-1

I

sln) E 24h-d)
d--0 IF

=
,

= 21h - o) + 21h- 1) + . . . + 2h-4h-4-D) + 2h" (h- ta-D)
Set i=h-d

,
so D= h - i and while d ranges over

0,1 , - . . > h- I , I will range over h-0
,
h- I

,
. . . h- (in- 1)

h
" "

1

Now

SHE £2"
"
(i) = £-215 .is £, E. i (

because)
n > 2h

E- I [=L

= nÉ÷i.sn?Eii-t2n(&gii---% + f. + £ + + . . . = It { + Igt £+12T . . .)
÷

lomplexityofmake-heapworkdoue.bymake - heap is bounded by a
constant times the number of swaps

so is 0 (n)
.

updatingprioritie.sn
Suppose a heap contains an item with priority K ,
and we execute update-priority (item , j) .

- We replace K with j in the heap , and then

restore the order invariant :

if j < K , do percolate-up from the

modified node

if K < j , do percolate -down from

the modified node .

ok
. Top
~ a.
A A. A
A BAND

•This takes 0(log n) time - bet how.gl?owe-find⇒therigwtnodetochau.ge/2estoring
order

-To do this
,
we need an auxiliary data structure .

Ezd

(wectnessofswappingiupercdated_
- Suppose we are percolating down Cagc Then cand b were. previously. swapped,
so we know bte , bed, and

b< c.

dhe
. If c > e and eed ,

we swap C
,
e

Now : . we know b etc

and be
.
es d

%•

possibly below a - whichdgy.ge
' " order is ok , except

we still have to look at .

(÷;¥,°fswaPPinginperco↳~. suppose we are percolating up a

•we know CED ,Cte , because we

previously swapped c with dore

dhe .we know that bea

if cab
,
we swap e.b

Now :
- we now know that

c < bee⇐b and cab Ed

and C < bea

DEE -So order is ok
, except

T3 possibly with ancestors
of

C
,
which we still must check.

