
AVL Trees

CMPT-225

Real. . A BST is
- a binary tree
- with nodes labelled by keys
- for every two nodes wiv

:

' if u is in the left subtree of ✓

then key (a) < key G)

. if u is in the right subtree of ✓ ,

then key Cu) > keyG)
" BST operations take time proportional to the tree height ,
which might be the same as the number of keys .

• AVL Trees are a kind of
"self - balancing

" BST
.

Their height is always almostwhere
n is number of keys .

• An AVL Tree is a BSI that satisfies the following
hÑtgbiant :
For every node u ,

/ height/ leftIN - height / right G) If I 1

(we define height (left (D) = -1 if left 4) does not
exist , + similarly for right 41) .

• Implementing the Operations :

1. Perform B5T operation , then

2. repair balance if needed .

How unbalanced can an AVL tree be ?

E± :

AYnaximallyunbalancediheight-5AVLTree.TT#A.
" "
MM↳

t.MN?bhbb7nodls✓
YÉ

HowtallcauauAVLTreeb.es?LetNlhl--min
.

of nodes in an AVL tree of height h .

Observe : N(o) = 1

N(1) = 2
Nlh) = Non - it Nlh - 2) +1

> 2N (h-2)
> 2- 2N (h-4) -
> 23N (h - 6)

32inch -2 it
If h is even, we end when

{211=2"? I h-2i=o ⇒ i=L

claniNlh)>2h

propositioi.N-hh.tk (for all h >o)

If: By ind. on
h .

Basis : NL0)
= 1>-20--1 ✓

N1H = 2 > 2
"-
=P ✓

Assume , for some h> 1 , that N1H)
> 2h
"

.

Now Nlhti) > ZN1H-1) > 2.2*2=2"¥=2h¥=2" ✓
-

So : Nh) > 2h
"
⇒ log, N1H >% ⇒ he 2 log ,N1H E 210gzn

We have : for every Avh tree with
n nodes

,
and height h ,

h<2logzn=O(logn)_

This : AVLTree search takes time that is ①(tog n)

maxAVLTreeheightvs-BSTheigh.tlWorst case # nodes visited by AVL- tree us. BST search)

I LIE

to 7

too 14

1000 20

104 27

105 33

106 40

107 47

108 53

109 60

10
" 66

Unbalanced sub-trees are
"

repaired
"

using rotations

right rotation
at node with 5

→ ,③←¥0 ①*⑤
① '④ ⑥ '⑧

'
⑦

← ⑥ '⑧
left rotation
at node with 3
-

AV-L-Treeinsertion.li
Do BST insertion .

I

2 . If there is an unbalanced node ,
' let v be the unbalanced node of greatest depth

*

- repair the imbalance at v.

Consider 4 cases :

I b is the newly inserted node

✓☒
←
" unbalanced

ÉÉ÷÷÷÷÷÷÷÷÷÷µ÷÷;÷i§*÷
E*É*→ jEo:ÉÉ+
r¥±

A
I

* It must be on the path from the new leaf tothe root .

To fix the "outside" cases : do 1 rotation at the unbalanced node
.

1 In

K-I

⇒

:÷÷÷÷÷¥;÷;÷÷÷±i:÷÷÷÷i÷
The

"

inside cases
"

are not fixed by this rotation :

I
0

To fix the
"

in-idea.ses , we use

tworotatious-a.it
" """"""""

to b

Insertion here I here9

7

To fix the "insideases , we use

tworotatious-a.it
.

*

to

""" rotation. .

ÉÉt
to b '

µ right
rot .

Insertion here I ☒ here ✓ at a-

(like outside case)

To fix the
"

insi-dea.es , we use tworotatious :

a

É÷É
i. to

.

÷ µ right
rot .

Insertion here 1 I hereP ✓ at a-

After 1- rotation ,this
ta

(like outside case)

.FÉ÷ÉÉ:É÷

To fix the
"

in-idea.se , we use

tworotatious-i.li
to to

11 right
rot .

Insertion here 1 I hereP ✓ at a-

After 1 rotation ,this
t°

(like outside case)

The entire operation is it
left (c)← b⇐a IÉÉÉ%ÉIleft (a)←T3

right (b)←T2

chaugeparavtlastobeparatl~l.tn
1 rotation =3 assignments ; 2rotations = 6 assigns ; double rat. =5assigns.)

AVLTreetdemoral.it
.
.
Do BST removal .

2.Rebalauoe-De-f.ie" the parent of the deleted node
" (*) by cases:

I. The deleted key was at a leaf : ¥→o
2.The deleted key was at a node
with one child :

no

g.The deleted key is

¥¥§f± §¥ÉÉ*at a node with
2 children :

Eat : After doing a BST removal in an AVL tree, there is
at most 1 unbalanced node

,
and it is on the path

from the parent of the deleted node to the root .

(If the deleted node was the root, the
"

parent of the deleted
node" does not exist - but also there can be no unbalanced node

. I

Consider :

•

7.[¥÷÷.÷t;¥;:::÷☒It
0 Node with key to be deleted
☐ Deleted node

oParent of deleted node .

0 Unbalanced node .

0This node
,
for example , cannot be unbalanced .

An ALV tree removal that illustrates :

1.Needtore-balanaeafterremoral-2.R.ee
-balancing node u may reduce the height

of a

subtree
, resulting in an ancestor of a being unbalanced .

I
remove④
⇒
¥ ¥② t.ES left you

② ⑤

µ right
at to

I

50B¥
⑤ ②

'

⑤ oh
=L ④

Thebalance (for deletion) :
-

w← parent of deleted node
,
if it exists

for(each node a = w . . -
root on path from W . . - root){

' if it is unbalanced
- Let T be the subtree rooted at m

- rebalance T using suitable rotations
*

.
if height of T did not get smaller, return

}
* either a single or double rotation, based on case
analysis similar to that used for insertion .

Correctness of the algorithm involves two properties :
a) There is at most 1 unbalanced Node after deletion

b) RebalancingW may make an ancestor of w unbalanced .

lomplexityofAVLtreeoperations.IE
very AVL

tree with n nodes has height 040g n).
•The worst case amount of work for main operations is :

• search : 040g n)
• one traversal from root to leaf : 0 (login)

• insert : 0(tog n)
• two traversals from root to leaf (down & back up) :(0(tog n))
• two rotations : 04)

• remove : 0(tog n)
• two traversals from root to leaf (down & back up) :(0(tog n))

• at most, two rotations at
each: 0(1) • 040g a) =O fog n) .

node on that path .

⇒ All three major operations in 0(tog n) time .

End

