Binary Search Trees

CAPT 225

ADTs related to Sets

- Set: unordered collection of values/objects
- Operations:
- insert (x) // add x to set
- member $(x) / /$ check if x in set. a.k.a. find (x), search (x), lookup (x)...
- remove $(x) / /$ remove x from set
- size () /I get size of set
empty() $/ / /$ is set empty?
- clear)// remove all de emends (i,e, make set empty).
- We call the values we store keys,
- We assume the keys are from some ordered set S
ie, for any two keys $x, y \in S$, we have exactly one of $x<y, x=y, y<x$
- Want implementations where all operations are efficient/fast

Q: What will count as "fast"?

ADTs related to Sets

- Consider time complexity of operations for simple list + array implementations:

	insert	find	remove
	$O(1)$	$O(n)$	$O(n)$
on-ordered array	$O(n)$	$O($ log $)$	$O(n)$
ordered array	$O(1)$	$O(n)$	$O(n)$
Un-ordered linked list	$O(n)$		
ordered liked list	$O(n)$	$O(n)$	$O(n)$

Q: What will coset as "fast"?
A : Time $O(\log n) / / n$ is size of set

Some Related Containers ADDs

- Multiset: like set, but with multiplicities (aka bag)

$$
\text { . count }(x)
$$

- Map: unordered collection of <kay, value〉 pairs, associating at most one value worth each key. (e.g. partial function Keys \rightarrow Valves).
- put(key, val) I/ in place of insert x
-get (key) returns value associated with ky
- Dictionary: Like map, bot associates a collection of values with each key.

Implementations of these are simple exertions to implementations of sets, which we focus on.
$\underline{\underline{\text { Binary Search Trees }}\left(B S T_{s}\right)}$
A BST is

- a binary tree Il a structure invariant
- with nodes labelled by keys
- satisfying the following order invariant:
for every two nodes uv:
- if u is in the left subtree of v then key $(u)<\operatorname{keg}(v)$
if μ is in the right subtree of v_{1} then key $(u)>\operatorname{key}(v)$

Every sub-tree of a BST is a BST.

This makes recursive algorithms very natural.

Fact: In-order traversal of a BST visits keys in non-decreasing order.
Proof Sketch:
Basis: $h=0$, so one node,
I.A:: The claim holds for trees of height $\leq h$.

ISS.: T is:

We: 1) traverse A, visiting key in sequence $a_{1}, a_{2}, \ldots a_{k}$.
2) visit v
3) traverse B_{1}, visiting keys in sequence $b_{1}, b_{2}, \ldots b_{m}$

Overall, we visit:

$$
\begin{array}{r}
a_{1} a_{2} \ldots a_{k} \vee b_{1} b_{2} \cdots b_{M} \\
B_{g} \text { I.H. } \quad a_{1} \leqslant a_{2} \leqslant \ldots \leqslant a_{k} \\
b_{1} \leqslant b_{2} \leqslant \ldots \leqslant b_{m}
\end{array}
$$

Because T is a BST, so $a_{k} \leqslant k e y(v)<b_{1}$

$$
\therefore a_{1} \leqslant a_{2} \leqslant \cdots \leqslant a_{k} \leqslant k \operatorname{keg}(1) \leqslant b_{1} \leqslant b_{2} \cdots \leqslant b_{m} \text {. }
$$

BST Find/Search : examples
find (5)
(2)

find (7)
(2)

find 6

BST Find: Chooses sub-trees

find 6

BST member/find: examples

Some notation
Suppose v is a node of a BST. We write:

$$
\begin{aligned}
& \text { left }(v)=\text { left child of } v \\
& \operatorname{right}(v)=\text { right child of } v \\
& \text { key }(v)=\text { key labelling } v \\
& \operatorname{nod}(x)=\text { node } v \text { sot. Key }(v)=x .
\end{aligned}
$$

BST find (x) Pseudo-code
find $(t)\{/ /$ retuse true of t is in the tree. return find (t, root)
find $(t, v) / /$ return true if t appears in $\{\quad / /$ subtree rooted at v.
if $t<k e y(v) \& v$ has a left subtree return find (t, left (r))
if $t>\operatorname{key}(v)$ \& v has a right subtree return find (t, right (v))
if $\operatorname{key}(r)=t$
return true
reteern false /IV is a leaf, does not have t

BST find (t, v) pseudo-code - alternate version
find $(t, v) / /$ return true if t appears in \{ // subtree rooted at v.
if $k e y(r)=t$
return true
if $t<\operatorname{key}(v) \& r$ has a left subtree return find (t, left (r))
if $t>$ key $(v) \& v$ has a sight subtree return find $(t, \operatorname{right}(v))$
return false

Q: Which version is better?
$A:$ key $(v)=t$ will almost always be false, so the first version should do fewer comparisons, and usually be faster.

BST insert (x) Pseudo-code
insert $(t)\{$
$/ /$ adds t to the tree
// assumes t is not in the tree already*
$u \leqslant$ node at which find (t, root) terminates $x *$ if $t<k_{e y}(u)$
give u a new left child with key t else give u a new right child with key t.
\}

* Exercise: Write the version that does not make this assumption.
*x Exercise: Write the version where the search is explicit.

BST Insert Examples

BST Insert Examples

BST insert (x) Psendo-code - explicit search version.
insert $(t)\{/ /$ adds t to the tree, if it is not already there. insert (t, root)
ξ
insert $(t, v) / /$ insert t in the subtrie rooted at v, if it is not there. \{

If $t<\operatorname{key}(v)$ \& has a left subtree
insert (t, left (r))
If $t>$ key $(v) \leqslant v$ has a right subtree
insert (t, right (v))
if $t<\operatorname{keg}(v) / /$ here v has no left child
give v a new left child with key t
if $t>\operatorname{keg}(v)$ // here r has no right curd
give r a new riot child with key t.
/If we reach here, $t=\operatorname{key}(v)$, so do nothing.
ξ

Insertion Order for BSTs: Examples.
1). start with an empty BST

- incest $5,2,3,7,8,1,6$ in the given order
2). Start with an empty BST - insert $1,2,3,5,6,7,8$ in the order given
* Insertion order affects the shape of a BST
* Removal order cantor.

Insertion Order for BSTs: Examples.
1). start with an empty BST

- incest $5,2,3,7,8,1,6$ in the given order

2). start with an empty BST - insert $1,2,3,5,6,7,8$ in the order given

* Insertion order affects the shape of a BST
* Removal order cantor.

BST remove (t)

- We consider 3 cases, of increasing difficulty.
- Case 1: t is at a leaf
i) find the node v with key $(v)=t$
ii) delete r

Ex: $\operatorname{remore}(7)$

BST remove (t)

- We consider 3 cases, of increasing difficulty.
- Case 1: t is at a leaf
i) find the node v with $\mathrm{key}(v)=t$
ii) delete r

Ex: remore(7)
(2)

BST remove (t)
Case 2: t is at a node with 1 child
i) find the node v with key $(v)=t$
ii) Let u be the child of v
iii) replace v with the subtree rooted at u.

Examples:

BST remove (t)
Case 2: t is at a node with 1 child
i) find the node v with key $(v)=t$
ii) Let u be the child of v
iii) replace v with the subtree rooted at u.

Examples:

BST remove: Case 3 Preparation: Successors

- In an ordered collection $X=\left\langle\ldots s_{i-1}, s_{i}, s_{i n}, s_{i+2} \ldots\right\rangle$
S_{i-1} is the predecessor of Si_{i}
S_{i+1} is the successor of s_{i}
Write $\operatorname{succ}_{x}\left(s_{i}\right)=s_{i+1}$
- Let $V=\left\langle v_{1}, \ldots v_{n}\right\rangle$ be the voles of the tree ordered as per an in-orden traversal.
. Let $K=\left\langle k_{1}, \ldots, k_{n}\right\rangle$ be the keys, in non- decreasing order.
Then: $y=\operatorname{key}(u) \Rightarrow \operatorname{succ}_{k}(y)=\operatorname{key}(\operatorname{succ} v(u))$
ie, the next rode has the next kay.

BST remove: Case 3 Preparation : Successors in BSTs

- If S is a set of keys, and $x \in S$, then the successor of x in S is the smallest value $y \in S$ sit. $x<y$.

$$
\begin{aligned}
& S=\{19,27,8,3,12\}, \operatorname{succ}(8)=12, \operatorname{succ}(12)=19, \ldots \\
& C S=\{3,8,12,19,27\})
\end{aligned}
$$

- In a BST, in-order traversal visits keys in order.

Let S be the set of keys in BST T.
If v is a node of T, and $k e y(v)=x$, then $\operatorname{succ}(x)$, the successor of x in S, is $\operatorname{key}(u)$ where u is the node of T that an in-orden traversal of T visits next after v.

BST remove: Case 3 Preparation: Successors in BSTs

- If v is a node of BST T, we can say the successor of v in T is the node of T visited just after v by an in-order traversal of T.
Then: $\quad \operatorname{succ}(x)=\operatorname{key}(\operatorname{succ}(\operatorname{node}(x))$
- Or: If $k e y(x)=x$, we can find the successor of x by finding the successor node of v, and getting it's key:

$$
\operatorname{succ}(\operatorname{key}(v))=\operatorname{key}(\operatorname{succ}(x))
$$

BST remove: Case 3 Preparation: Successors.
If node r has a right child, it is easy to find its successor:
$\checkmark \operatorname{succ}(v)$ is the first node visited by an in-order traversal of the right subitree of v

Ex:

BST remove: Case 3 Preparation: Successors.
If node r has a right child, it is easy to find its successor:

$\operatorname{succ}(v)$ is the first node visited by an in-order traversal of the right subtree of v.

Ex: ${ }^{v}>$

BST remove: Case 3 preparation: Successors
To find the successor of node v that has a right child, use:

$$
\begin{aligned}
& \operatorname{Succ}(v)\} \\
& n \leftarrow \operatorname{right}(v) \\
& \text { while (left }(n) \text { exists) \& } \\
& \xi^{u} u \leftarrow \operatorname{left}_{t}(n) \\
& \text { return a } \\
& 3
\end{aligned}
$$

BST remove (t)
Case 3:t is at a node with 2 children
i) find the node v with $k e y(r)=t$
ii) find the successor of v - call it u.
iii) key $(v) \leftarrow k e y(u)$ / replace t with succ(t) at v.
iv) delete u :
a) if a is a leaf, delete it.
b) if u is not a leaf, it has one child w, replace u with the sultree rooted at ω.

Notice: iv (a) is like case 1
iv (b) is like case 2

BST remove (k) when node (k) has 2 children
Ex. To remove 5: 1) Find 5
2) Find successor of 5
3) Replace 5 with its suck.
4) In this example, such (5) has no children so just delete the node
 where it was.

BST remove (k) when node (k) has 2 children
Ex. To remove 5: 1) Find 5
2) Find successor of 5
3) Replace 5 with its suck.
4) In this example, such (5) has no children so just delete the rode where it was.

BSt remove (k) when node (k) has 2 children
To remove 6: 1) Find 6
2) Find successor of 6
3) Replace 6 with its successor
4) Replace succ(6) with its
remove 6

BSt remove (k) when node (k) has 2 children
To remove 6: 1) Find 6
2) Find successor of 6
3) Replace 6 with its successor
4) Replace succ(6) with its nou-emply subtree.

Complexity of BST Operations
Measure as a function of: height (h) or site (n).

- All operations essentially involve traversing a path from the root to a node v_{1} where in the worst case v is a leaf of maximum depth.
So: find: $O(h), O(n)$
insert: $O(h), O(n)$
remove: $O(h), O(n)$
- For "short bushy" trees (eg. T1) h is small relative to n.
- For "tall skinny" trees (e.j $T 2$) h is proportional to n.

Q: Lan we always have short bushy BSTs?

Perfect Binary Trees
A perfect binary tree of height h is a binary tree of height h with the max. number of nodes:

- \int

Perfect Binary Trees
A perfect binary tree of height h is a binary tree of height h with the max. number of nodes:

x

Claim: Every perfect binary tree of height h has $2^{h+1}-1$ nodes.
Pf: By induction on h, or on the structure of the tree.
Basis: If $h=0$, there is one node (the root).
We have $2^{n+1}-1=2^{1}-1=1$ as required.
I. V: Let $k \geqslant 0$, and assume that every perfect binary tree of height k has $2^{k+1}-1$ nodes.
I.S.: (Need to show a p.b.t. of height $k+1$ has $2^{(k+1)+1}-1$ nodes) A perfect binary tree of height $k+1$ is constructed as:

Where A, B are perfect binary trees of height k.
By I.H. they have $2^{k+1}-1$ nodes.
So, the tree has $2^{k+1}-1+2^{k+1}-1+1$

$$
\begin{aligned}
& =2 \cdot 2^{k+1}-1 \\
& =2^{(k+1)+1}-1 \text {, as required. }
\end{aligned}
$$

Existence of Optimal BSTs
Claim: For every set S of n keys, there exists a BST for S with height at most $1+\log _{2} n$
Proof: Let h be the smallest integer sit. $2^{h} \geqslant n$, and $\operatorname{lot} m=2^{h}$.
So: $2^{h} \geqslant n>2^{h-1}$

$$
\begin{gathered}
\log _{2} h \geqslant \log _{2} n>\log _{2} 2^{h-1} \\
h \geqslant \log _{2} n>h-1 \\
h<1+\log _{2} n
\end{gathered}
$$

- Let T be the perfect binary tree of height h
- label the first n nodes of T (as visited by an in-order traversal) with the keys of S, and delete the remaining nodes (to get T^{\prime}).
- T^{\prime} is a BST for S with height $h<1+\log _{2} n$
- So, there is always a BST with height $O(\log n)$.

Optimal BST Insertion Order
Given a set of keys, we can insert them so as to get a minimum height BST:

Consider:

Observe: The first key inserted into a BST is at the root forever (unless we remove it from the BST)

$$
\Rightarrow
$$

Optimal BST Insertion Order
Given a set of keys, we can insert them so as to get a minimum height BST:

Consider:

(It is the median key)

Observe: The first key inserted into a BST is at the root forever (unless we remove it from the BST)

$$
\Rightarrow
$$

Optimal BST Insertion Order:

* Apply the "root is the median key" principle to each sub-tree.
- So, there is always a BST with height $\sim \log n$
- Can we maintain min. height with $O(\log n)$ as we insert a remove keys?
(A)

insert 1

(B)
. B is the only min height BST for 1..7.
- $A \rightarrow B$ required "moving every node"
- To get $O(\log n)$ operations, we need another kind of search tree, other than plain BSTs.

To get efficient search treas, give up at least one of:

- binary
- min. height
- Next: Self-balancing search trees.

End

BST member/find: examples
find (5)
(2)

find (7)

find 6

BST Find: Chooses sub-trees

find 6

Ex: Reasoning with the order invariant.

$$
\begin{aligned}
& \operatorname{key}(v 1)<\operatorname{key}(u) \\
& \operatorname{key}(v 2)>\operatorname{key}(u) \\
& \operatorname{key}(v 3) ? \operatorname{key}(u) \\
& \operatorname{key}(u)<\operatorname{key}(w)<\operatorname{key}(v 3) \\
& \Rightarrow \operatorname{key}(u)<\operatorname{key}(v 3)
\end{aligned}
$$

Example: BST remove (t) where node (t) has 1 child

Notice:
Because a perfect binary tree of height h

$$
\begin{aligned}
& 2^{n+1}-1\left\{\begin{array}{c}
\text { nodes } \\
\begin{array}{c}
2^{h}-1 \\
\text { internal } \\
\text { nodes } \\
2^{h} \text { leaves } \rightarrow \infty
\end{array} \\
2^{h}+2^{h}-1=2 \cdot 2^{h}-1=2^{h+1}-1
\end{array}\right.
\end{aligned}
$$

