Binary Search Trees

ADTs related to Sets
- Set: unordered collection of values/objects
- Operations: insert(x) // add x to set member(x) // check if x in set. a.K.A. fmal(x), search(x), lookup(x)
semove (x) // remove x from set
· size () // get size of cet · empty() // is set empty? · clear() // remove all elements (i,e, make cet empty).
· We call the values we store keys,
. We assume the kays are from some ordered set S
ie, for any two kays x, y 65, we have exactly
one of x <y, th="" x="y," y<x<=""></y,>
- Want implementations where all operations are efficient/fast
Q: What will count as "fast"?

ADTs related to Sets

· Consider time complexity of operations for simple list + array implementations!

· · · · · · · · · · · · · · · ·	insert	find	remove
un-ordered array	0(1)	O(n)	0(n)
ordered avrag	Oln	O(logn)	
un-ordered linked list	0(1)	0(1)	O(n)
ordered Linked list	0(1)	On	· 0(n)

Q: What will coust as "fast"? A: Time O(logn) //n is size

Some Related Container ADTS . Multiset: Like set, but with multiplicities (aka bag) · count(x) . Map: unordered collection of Kkey, value pairs, associating at most one value with each key. (e.g. partial function Keys - Values). · put (key, val) // in place of insert x . get (key) // returns value associated with key · Dictionary: like map, but associates a collection of rables with each key. Implementations of these are simple actentions to implementations of sets, which we focus on.

Binary Search Trees (BSTs) A BST is - a binary tree / a structure invariant - with nodes labelled by keys - satisfying the following <u>order invariant</u>. for every two nodes N.V: · if u is in the left subtree of v then key(u) < key(v) · if m is in the right subtree of v then key (u) > key(v)

¥. . . (5) O !5

⊀. . .

Every sub-tree of a BST is a BST. keys in this subtree This makes recursive algorithms very natural.

Fact: In-order traversal of a BST visits keys in non-decreasing order.

Proof Sketch: Basis: h=0, so one node, I.H.: The claim holds for trees of height ≤ h. I.S.: T 15. (A, B may be Inti empty) 0-A B we: 1) traverse A, visiting key in sequence a, a, a. 2) Visit V 3) traverse B, visiting keys in sequence bi, b2,... bu Overall, we visit: a, az ... ak v b, bz ... bm Bg I.H. a, ≤ a2 ≤ ... ≤ ak 6, ≤ b2 ≤ ... ≤ bm Because T is a BST, so QK ≤ key (v) < b, $o a_1 \leq a_2 \leq \dots \leq a_k \leq key(s) \leq b_1 \leq b_2 \dots \leq b_m$

BST : examples Find Search L(5) 9 8 8 9 5 6 5 8) 10

BST Find: Chooses sub-trees B

BAN member/find: examples

· · ·		S	me	No	atio	5 <u>.</u>	· · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	•	· · ·	· · ·	•	· · ·	· · ·	· •	· · ·	•	· · ·	•	· •	· · ·	•	•	· ·	•	· ·
• •	· ·	S	ppo	ses	\checkmark	15 . (2 n	ode	0	f a	2	BST			2 2	シィ	ite		• •	•	•	• •	•	•	• •	•	
· · ·	· · ·	· · ·		i gh	(v) k(v) (v) =		6		Jht		لمنها		·f		· · ·		· · · · · · · · · · · · · · · · · · ·	• • • • •	· · · · · · · · · · · · · · · · · · ·	•		· · ·	· ·	•	· · ·	•	· · ·
· ·	· · ·	· · ·			.(x)									v).	- -	×.	· ·	•	· ·	•	· •	· ·	•	•	· ·		• •
• •	• •	• •			· ·	• •	••••	• •	• •	•	• •		•	• •	• •			•	• •	•	•		•	•		•	• •
		• •			• •	• •				•			•					•		•	•		•	•		•	
					• •										• •	•			• •					÷			
		• •								•			•					•		•	•		•	•	• •	•	
				• •	• •																•						
• •	• •		• •					• •	• •	٠	• •	• •	٠	• •	• •	• •		٠	• •	٠		• •	•	÷	• •		
• •								• •		•	• •		•	• •		• •		•	• •	•	•		•	•	• •	•	
						• •	• •	• •				• •									•			•			
					• •																						
	• •			• •	• •	• •	• •	• •	• •	•	• •	• •		• •	• •	•	• •	٠	• •	•		• •			• •		• •
					• •																						

BST find (x) Pseudo-code

find (t) {// return true iff t is in the tree. return find(t, root) find (t, v) // return true if t appears in Il subtree rooted at v. t < key (v) & v has a left subtree veturn find (t, left(v)) t > key (v) & v has a right subtree return find (t, right (v)) key(r)=t return true eern false // v is a leaf, does not have t

BST find (t.,) pseudo-code - atternate version

find (t, v) // return true if t appears in { // subtree rooted at v. key(r)=t return true if t < key (v) & v has a left subtree veturn find (t. left(v)) t > key (v) & v has a right subtree return find (t, right (r)) return talse Q: Which version is better? A: key(r)=t will almost always be false, so the first rersion should do fewer comparisons, and usually be taster.

BST insert(x) Pseudo-code

insert(t){ ladds to to the tree lassumes t is not in the tree. already * u « node at which find (t, root) terminates XX if t < key (m) give m a new left child with key t give n a new right child with key t. * Exercise: Write the version that does not make this assumption. xx Exercise: Write the version where the search is explicit.

BST Insert Examples +(7) inser

BST Insert Examplies insert(7)insert(1)

BST insert(x) Pseudo-code - explicit search version.	· · · ·
Insert(t)? //adds \pm to the tree, if it is not already there. insert(t, root)	· · · · ·
insert (t, v) insert t in the subtree rooted at v, if it is not there.	· · · · ·
2 if $t < key(r) \notin r$ has a left subtree insert(t, left(r))	· · · · ·
if $t > key(v) \notin v$ has a right subtree insert $(t, right(v))$	· · · · ·
if $t < key(v) // here v has no beft childgive v a new left child with key tif t > key(v) // here v has no right childif t > key(v) // here v has no right child$	· · · · ·
give v a new right child with the give	· · · · ·
//if we reach here, t=key(v), so do nothing.	
	· · · · ·

Insertion Order for BSTs: Examples.	· · · · · · · · · · · · ·
1). start with an empty BST	· · · · · · · · · · · ·
·insert 5,2,3,7,8,1,6 in the given orde	
· ·	. .
2) start with an empty BST insert 1,2,3,5,6,7,8 ' in the order given	· · · · · · · · · · · ·
- insert 1,2,3,5,6,7,8 ' in the order given	· · · · · · · · · · · ·
. .	· · · · · · · · · · · ·
	· · · · · · · · · · · ·
* Insertion order affects the shape of a BST * Removal order can too.	· · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·

Insertion Order for BSTs: Examples. 1). start with an empty BST insert 5,2,3,7,8,1,6 in the given order 2) 3 6 (1) 2) start with an empty BST insert 1,2,3,5,6,7,8 ' in the order given * Insertion order affects the shape of a BST * Removal order can too.

BST remove (t) - We consider 3 cases, of increasing difficulty. t is at a leaf - Case 1: i) find the node v with key(v) = t ii) delete v Ex: remore(7) 5 3 8)

BST remove (t) - We consider 3 cases, of increasing difficulty. - Case 1: t is at a leaf i) find the node v with key(v) = t
 ii) delete v Ex: remore (7) (B)

remove (+) is at a node with 1 child Case 2: i) find the node v with key(v)=t ii) let u be the child of v iii) replace v with the subtree rooted at u. Examples: remove 3 10 10 (0)

remove (+) is at a node with 1 child Case 2: i) find the node v with key(v)=t ii) let u be the child of v iii) replace v with the subtree rooted at u. Examples: remove remove 0 0

BST remove: Case 3 Preparation: Successors . In an ordered collection X=L...Si, Si, Sin, Sin > Sin is the predecessor of Si Sin is the successor of Si Write Succ_x(si) = Siti . Let V= <u,,... vn> be the nocles of the tree ordered as per an in-order traversal. Let K= Lk,..., kn > be the keys, in non-decreasing order. Then: $y = key(u) \Rightarrow succ_{k}(y) = key(succ_{k}(u))$ i.e., the next node has the next key.

BST remove: Case 3 Preparation: Successors in BSTs
· If S is a set of keys, and xES, then the <u>successor of x</u> in S is the smallest value yES s.t. x <y.< th=""></y.<>
E_{2} $S = \{19, 27, 8, 3, 12\}$, $SUCC(8) = 12$, $SUCC(12) = 19$,
(S=23,8,12,19,275)
. In a BST, in-order traversal visits keys in order. Let S be the set of keys in BST T.
Let S be the set of keys in BST T. If v is a node of T, and key(v) = x, then succ(x),
the successor of x in S, is key (4) where u is the
node of T that an in-order traversal of T
visits next after v.
\cdots
5
(3)

BST remove: Case 3 Preparation: Successors in BSTs If v is a node of BST T, we can say the successor of v in T is the node of T visited just after v by an in-order traversal of T. Then: SUCC(x) = key(SUCC(node(x)) ·Or: If key(v)=x, we can find the successor of x by finding the successor node of v, and getting it's key: SUCC (key (v)) = key (SUCC (v))

BST remove: Case 3 Preparation: Successors. . If node v has a right child, it is easy to find its successor: Succ(v) is the first node visited by an in-order traversal of the right subtree of v

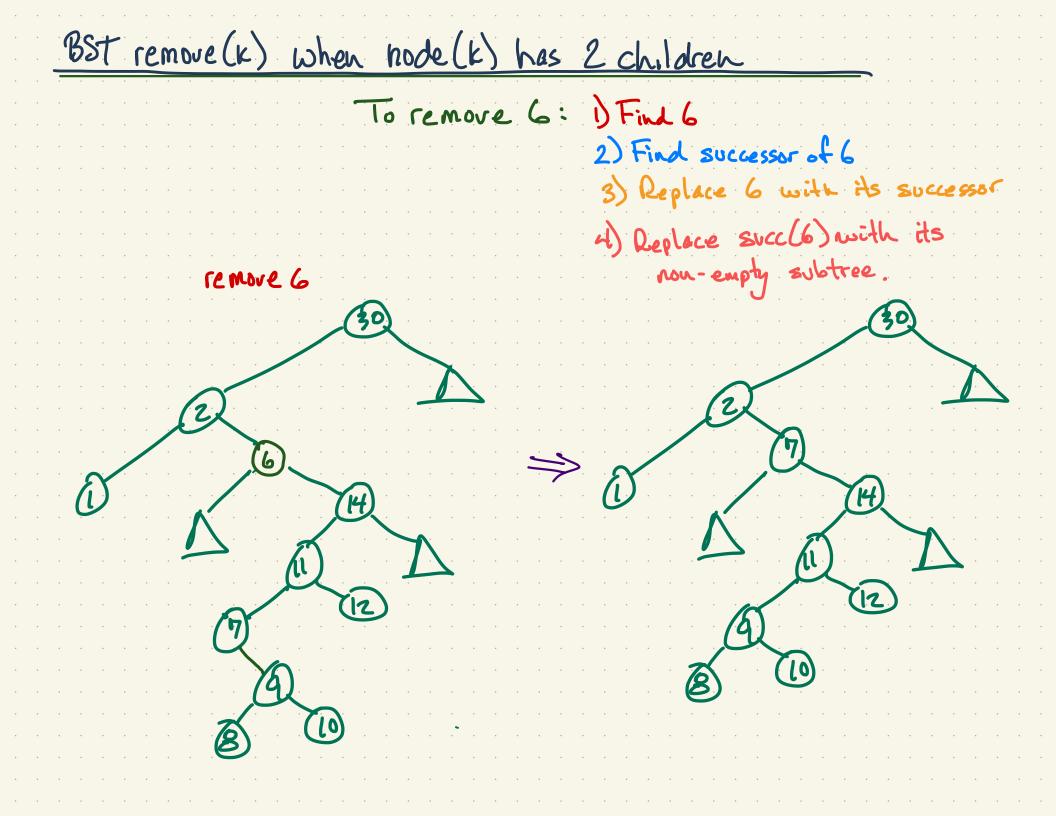
BST remove: Case 3 Preparation: Successors. . If node v has a right child, it is easy to find its successor: Succ(v) is the first node visited by an in-order traversal of the right subtree of V.

BST remove: Case 3 preparation: Successors . To find the successor of node v that has a right child, use: Succ(v) { maright(v) reshibe (beft(m) exists) 2 re + left (m) return u

BST remove(t) Case 3: t is at a node with 2 children i) find the node v with key(v)=t ii) find the successor of v - call it u. iii) key(v) & key(u) // replace t with succ(t) at iv) debete u: a) if a is a leaf, delete it.
b) if a is not a leaf, it has one child w, replace a with the subtree rooted at w. Notice: iv (a) is like case 1 iv (b) is like case 2

remove (k) when node(K) has 2 children BS 1) Find 5 Ex. To remove 5. 2) Find success 3) Replace 5 with its 4) In this example, succ (5) children so just delete the 20 10

when node(K) has 2 children remove (k) BS 1) Find 5 Ex. To remove 5. 2) Find success 3) Replace 5 with its 4) In this example, succ (5 children so just delete the 0



BST remove (K) when node (K) has 2 children To remove 6: DFind 6 2) Find successor o L its succes 3 Replace wit 4) Replace succ(6) with its emoty SJ 14 10

Lomplexity of BST Operations # keys . Measure as a function of: height (h) or size (n). . All operations essentially involve traversing a path from the root to a node v, where in the worst case V is a leaf of maximum depth-8050) So: find: O(h), O(n)insert: O(h), O(n) h=? remore: O(h), O(n) . For "short bushy" trees (eg. T1) h is small relative to n. . · For "tall sking" trees (e.g. T2) h is proportional to n. -Q: (an we always have short bushy BSTs? T_2 h = n00 T2

Perfect Binary Trees . A perfect binary tree of height h is a binary tree of height h with the max. number of nodes:

Perfect Binary Trees . A perfect binary tree of height h is a binary tree of height h with the max number of nodes:

Claim: Every perfect binary tree of height h has 2^{h+1}-1 nodes. Pf: By induction on h, or on the structure of the tree. Basis: If h=0, there is one node (the root). We have $2^{h+1}-1 = 2^{l}-1 = 1$ as required. I.V. Let $k \ge 0$, and assume that every perfect binary tree of height k has $2^{k+1}-1$ nodes. [k+1)+1 T.S.: (Need to show a p.b.t. of height k+1 has 2 -1 hodes) A perfect binary tree of height k+1 is constructed as: KT A B K+1 Where A,B are perfect timery trees of height k. By I.H. they have 2^{k+1}-1 nodes. So, the tree has 2^{k+1}-1 + 2^{k+1}-1 + 1 = 2 2 k+1 = 2(k+1)+1 = 2(k+1)+1 = 2, as required.

Existence of Optimal BSTs Claim: For every set S of n keys, there exists a BST for S with height at most 1+log_n Proof: Let h be the smallest integer s.t. $2^h \ge n$, and let $m=2^h$. So: $2^h \ge n > 2^{h-1}$ $log_2 2h \ge log_2 n > log_2 2h l$ $h \ge log_2 n > h - l$ $n \int \frac{\ln^{-1}}{1}$ $h < 1 + \log_2 n$. let T be the perfect binary tree of height h · label the first n nodes of T (as visited by an in-order traversal) with the keys of S, and delete the remaining nodes (to get T'). ·T' is a BST for S with height h < It logen · So, there is always a BST with height O(log n)

Optimal BST Insertion Order Given a set of keys, we can insert them so as to get a minimum height BST: Or What can we say about the key here? onsiden: Observe: The first key inserted into a BST is at the root forever (unless we remore it from the BST)

Optimal BST Insertion Order Given a set of keys, we can insert them so as to get a minimum height BST: Os What can we say about the key here? onsides: (It is the median cen Observe: The first key inserted into a BST is at the root forever (unless we remore it from the BST)

Optimal BST Insertion Order. * Apply the "rost is the median key" principle to each sub-tree.

So, there is always a BST with height ~ log n · Can we maintain min. height with Ollogn) as we insert & remove keys? · Consider: insert 1 (4) Q D (B)(A)B is the only min height BST for 1...7. A -> B required "moving every node" · To get O(log n) operations, we need another kind of search tree, other than plain BSTs.

. To get efficient search trees, give up at least one di: Dinary - min. height . Next : Self-balancing search trees.

End

BST member/find: examples (5) 8 8 6 B 0.

BST Find: Chooses sub-trees B

Ex: Reasoning with the order invariant. key (v1) < key (ru) Kay (v2) > Kay (m) (ey (v3) ? key (u) key(re) < key(w) < key(v3) => key (~) < key (~3)

Example: BST removelt) where node (t) has 1 child remove (3) D remov Í O 10

Notice: Because a perfect binary tree of height h is Like thes: US leaves_ 2h+2h-1 $= 2 \cdot 2^{h} - 1 = 2^{h+1}$