Rooted Trees
CHPT-225

Graphs
Graph: a pair $G=\langle V, \bar{E}\rangle$, with

- V a set called "vertices" or "nodes"
- Ea set of pairs from V, ie $E \subseteq V \times V$, called edges.

Eg: $G=\{\{1,2,3\},\{(1,2),(1,3)\}\rangle$

"Ce is directed": edges are or dered pairs (often called "arcs"):

$$
\langle\{1,2,3\},\{(1,2),(1,3)\}\rangle \neq\langle\{1,2,9\},\{(2,1),(1,3)\}\rangle
$$

" G is undirected": edges are sets

$$
\langle\{1,2,3\},\{(2,1),(1,3)\}\rangle=\langle\{1,2,3\},\{(1,2),(3,1)\}\rangle=(*)
$$

- By default, by "graph" we will mean "undirected graph"

Path in G of length n :

- sequence $\left\langle v_{0}, v_{1}, v_{2}, \cdots v_{n}\right\rangle$ of vertices sot. $\left(v_{0}, v_{1},\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right) \cdots\right.$ are edges of G.
S.+ Path in G : path $\langle S, \ldots, t\rangle$ in G.

A st path of length 6 in G.
G.
Vertex t is reachable from s in G if there is an st path in G.
C is connected if for every pair $\mu_{1} v \in V$, $a s$ is reachable from v.

Connected

Not Connected.

Cycles \& Trees
Cycle in $G:$ path $\left\langle V_{0}, \ldots V_{n-1}, V_{n}\right\rangle$ in G where $V_{0}=V_{n}$.
Simple Path: all vertices are distinct
Simple Cycle: cycle $\left\langle V_{0}, \ldots V_{n-1}, V_{n}\right\rangle$ where $\left\langle v_{0}, \ldots, v_{n-1}\right\rangle$ is a simple path

Simple cycle of length 5

Tree: A connected, acyclic, graph.

Not a tree

Tree

Not a tree

Fact: Every tree with n vertices has $n-1$ edges.

Rooted tree: tree with a distinguished vertex called the root.

Unrooted tree Tree T with root.

Alternate drawing of T.

Notice: in a tree there is a unique path between any two vertices. So: a unique path from any vertex to the root.
Thus: the root induces a direction on the edges
-e gtoward the root.

(some times "away from the root").

Rooted Tree Terminology

- The root has no parent;
- Leaves have no children
- Internal nodes are the non-leaves (sometimes root excluded too).

Depth E Height

Depth of node $v=$ length of path from v to the root.
Height of node $r=$ length of longest path from v to a descendent of V (eg. to a leal)

Height of tree $T=$ her glt of its root
$=$ max height of any node in T
$=$ max depth of any node in T.

A rooted tree is

- k-ary if no node has $>k$ children
- binary if no node has $\geqslant 2$ children
- ordered if the children of every node are ordered.

EG: A ordered ternary tree:

Notice: When we draw a tree, or represent it in a data stractive, we order it.

In an ordered binary tree, every child of a node r is either the "left child of v " or the "right child of v ".

Subtree rooted at V : tree with root V and containing all descendants of V.
In a binary tree;
"Left subtree of v " meals the sulotree rooted at the left child if v

- sim. for "right subtree of v ".
subtree rooted
at v

End

