Rooted Trees

Graphs	· · · · · · · · · · · · · · · · · · ·
	a pair $G = \{V, E\}$, with V = A = Called "vertices" or "nodes" E = A = called "vertices" or "nodes" $E = A = called edges$. $G = \{21, 2, 3\}, 2(1, 2), (1, 3)\} \qquad 1 = 2$ $G = \{21, 2, 3\}, 2(1, 2), (1, 3)\} \qquad 1 = 2$
Cerso LE	$irected": edges are ordered pairs (often called "arcs"): (2,33, \{(1,2), (1,3)\} \neq \langle \{1,2,33, \{(2,1), (1,3)\} \rangle(2,33, \{(1,2), (1,3)\} \neq \langle \{1,2,33, \{(2,1), (1,3)\} \rangle$
لإر	indiveded": edges are sets $(2,33, \{(2,1), (1,3)\} = \langle \{1,2,33, \{(1,2), (3,1)\} \rangle = (*)$ fault, by "graph" we will mean "undirected graph"

Path in G of length n: · sequence (Vo, VI, VZ, ... Vn) of vertices st. (VosVi), (V, V2), (V2, V3) ... are edges of G. S.+ Path in G: path LS, ..., t> in G. s CDt A st path of length 6 in G. Vertex t is <u>reachable</u> from s in G if there is an s-t path in G. Gis connected if for every pair MUEV, au is reachable from v. Not Connected. (onnected

Cycles & Trees Cycle in G: path (Vo, ... Vn-1, Vn > in G where Vo=Vn. Simple Path: all vertices are distinct Simple Cycle: cycle < Vo, ... Vn, Vn > where Lvo,..., Vn-1) is a simple path ZD Simple cycle of fength 5 Cycle of length 7 (. repeats) Tree: A connected, acyclic, graph. Not a tree Not a tree Tree Fact: Every tree with a vertices has all edges.

Rooted tree: tree with a distinguished vertex called the root.
Unrooted tree Tree Twith root. Alternate drawing of T.
Notice: in a tree there is a unique path between any two vertices. So: a unique path from any vertex to the root.
Thus: the root induces a direction on the odges - eg. toward the root.
(some times "away from the root").

Rooted Tree Terminology ancestors The root has no parent; · Leaves have no children . Internal nodes are the non-beaves (sometimes root excluded too).

Depth & Height - depth 0 -> - dept 1 depth 2 deptr 4 -> 0 deptr 3 Depth of node v = length of path from v to the root. Height of node v = length of longest path from v to a descendent of v (eg. Height of tree T = height of its root = max height of any node in T = max depth of any node in T.

A rooted tree is · k-ary if no node has > k children · binary if no node has > 2 children · binary if no node has > 2 children · binary if the children of every · ordered if the children of every node are ordered.			
Eg: A ordered ternary tree:		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·
Notice: When we draw a tree, or represent it in a data structure, we order it.	• • •	· ·	 · ·
In an ordered binary tree, every child of a node v is either the "left child of v" or the "right child of v".	· · ·	· · · · · · · · · · · · · · · · · · ·	· · ·

Subtree rooted at V: tree with root v and containing all descendants of V. In a binary tree; · " left subtree of v" means the subtree rooted · Sim. for "right subtree of v". subtree rooted at - left subtree of v.

 · · · · · · · · · · · · · · ·	
 End	
 · · · · <u>· · · ·</u> · · · · ·	
 · · · · · · · · · · · · ·	