
SOLUTION

Simon Fraser University

Computing Science 295

Fall 2021

Friday Oct. 15 2021

Midterm Examination 1

Time: 45 minutes

This examination has 11 pages.

Read each question carefully before answering it.

 No textbooks, cheat sheets, calculators, computers, cell phones or other materials may

be used.

 All assembly code must be x86-64 assembly code.

 Hand in your scrap sheet(s) along with your examination paper. The scrap sheet(s) will

not be marked.

 The marks for each question are given in []. Use this to manage your time:

o One (1) mark corresponds to one (1) minute of work.

o Do not spend more time on a question than the number of marks assigned to it.

Good luck!

Part 1 - Each question is 2 marks – There are no part marks given!

Answer the following multiple choice questions on the bubble sheet at the back of this

examination paper.

1. Consider the following syntactically correct C code fragment:

float aFloat = 3.1415;

int sum = (int) aFloat + 0xFFFFFFFE;

Which value does the variable sum contain when the above C code fragment has

executed on our target machine?

a. 1.1415

b. -1

c. 0x00000001

aFloat = 3.1415

0xFFFFFFFE = -2

(int) aFloat = 3

sum = 3 + (-2) = 1 or 0x00000001 (int in hex)

d. 5

e. None of the above

2. Which step in the compilation process transforms our C code into assembly

instructions?

a. The step called the preprocessor

b. The step called the compiler – See Lecture 8 Slide 7

c. The step called the assembler

d. The step called the linker

e. None of the above

3. Consider the following syntactically correct C function:

char mystery(char someParam) {

 char result = 0;

 if (someParam > 0) result = someParam;

 else result = -someParam;

 return result;

}

What will it return once it has executed on our target machine with the parameter

someParam set to the value -128?

a. 127

b. 128

c. -127

d. -128

char mystery(-128) {

 char result = 0;

 if (-128 > 0) result = someParam;

 else result = -(-128);

So, it seems that result = 128

What is the bit pattern of 128?

Interpreting 128 as an unsigned char we get:

B2U(10000000) -> 27 -> 128

but we cannot interpret 128 as a signed char

because 128 is outside the range of signed char

-> [-128 .. 127], so the bit pattern 10000000

interpreted as a signed char is -128

Therefore even though it seems that

result = 128 (10000000)

It is actually the case that

result = -128

return result i.e., -128

EXTRA:

What is -128 as a bit pattern?

-128 -> T2B(X) -> (~(U2B(|X|)))+1 and X = -128

 See Lecture 3 Slide 11 Method 1

 (~(U2B(|-128|)))+1

 (~(U2B(128)))+1

 (~(10000000))+1

 -> someParam is a char -> w = 8 bits

 (01111111) + 1 = 10000000

 Check: B2T(10000000) -> -27 -> -128

-128 -> T2B(X) -> U2B(X + 2w)

 See Lecture 3 Slide 11 Method 2

 U2B(-128 + 2w) -> U2B(-128 + 28)

 -> U2B(-128 + 256)

 -> U2B(128) -> 10000000

e. None of the above

4. Consider the following syntactically correct C code fragment:

short count = 0xACE;

printf("count = %hhi\n", (char) count);

What is printed on the computer monitor screen when the above C code fragment

has executed on our target machine?

a. count = -50

count = 0xACE = 0000 1010 1100 1110

(char) count = 0xCE = 1100 1110

hhi -> signed char numerical output

 -> 1100 1110 = -27 + 26 + 23 + 22 + 21

 = -128 + 64 + 8 + 4+ 2 = -50

-> See Lecture_4_Demo.c

b. count = 0xCE

c. count = 206

d. count = 0xACE

e. None of the above

5. Consider the following syntactically correct C code fragment:

short aShort = -2;

char aChar = aShort;

short sumS = 0xABBB + (short) aChar + 1;

Which statement below is true about the above C code fragment once it has executed

on our target machine, but has not yet exited the scope of the variables aShort,

aChar and sumS?

a. sumS contains the hex value 0xABBA

b. aChar == aShort

c. Statements a. and b. are true.

aShort = -2 = 0xFFFE

aChar = aShort -> aChar = -2 = 0xFE -> 1111 1110

1111 1110 = -27 + 26 + 25 + 24 + 23 + 22 + 21

 = -128 + 64 + 32 + 16 + 8 + 4+ 2 = -2

So, Statement a. => aChar (-2) == aShort (-2) is TRUE

(short) aChar = 0xFFFE -> 1111 1111 1111 1110 = -2

(short) aChar + 1 = -2 + 1 = -1 -> 0xFFFF

0xFFFF = 1111 1111 1111 1111

0xABBB (1010 1011 1011 1011) + 0xFFFF -> 0xABBA

short sumS = 0xABBB + (short) aChar + 1;

So, Statement b.

 => sumS contains the hex value 0xABBA is TRUE

So, Statements a. and b. are true.

d. Only the statement b. is true.

e. None of the above

6. Consider the following C code fragment:

char char1 = 101;

char char2 = _______ ;

char sumOfChar = char1 + char2;

Which value must be assigned to char2 in order for the sum of char1 and char2

to create a positive overflow?

a. No numbers would create a positive overflow when added to 101.

b. 42

char1 = 101;

range of char -> [-128 .. 127]

For char1 + char2 > 127 i.e., create a positive

overflow, char2 > 127 – char1 (101) -> char2 > 26

So char2 = 42 satisfies the above condition

char1 (101) + char2 (42) = 143 > 127

char1 (101) + char2 (26) = 127 -> still within the

range (on positive side of range)

char1 (101) + char2 (-203) = -102 -> still within

the range (on negative side of range)

c. 26

d. -230

e. None of the above

7. Consider the following syntactically correct C code fragment:

unsigned int x = 0xDECAF000;

unsigned short y = 0xCAFE;

if (x > y) printf("Caf ");

if (x < (signed short) y) printf("Decaf ");

if ((unsigned char) x > y) printf("Latte ");

What is printed on the computer monitor screen when the above C code fragment

has executed on our target machine?

a. Caf Decaf Latte

b. Caf Latte

c. Caf

d. Decaf

e. None of the above

unsigned int x = 0xDECAF000;

unsigned short y = 0xCAFE;

if (x > y) printf("Caf ");

promoting y to 32 bits as an unsigned i.e.

padding with 0’s: 0xDECAF000 > 0x0000CAFE

without a calculator, we can see that these 32

bits 0xDECAF000, interpreted as an unsigned

value, will be > than 0x0000CAFE, also

interpreted as an unsigned value

So, Caf is printed on the computer monitor screen

of target machine.

if (x < (signed short) y) printf("Decaf ");

casting y to 16 bits as a signed i.e.

interpreting 0xCAFE as a signed value and

promoting it to 32 bits still as a signed i.e.

padding with 1’s: 0xFFFFCAFE

0xDECAF000 < 0xFFFFCAFE

without a calculator, we can see that these 32

bits 0xDECAF000, interpreted as a signed value,

will represent a larger negative value than

0xFFFFCAFE, also interpreted as a signed value

Remember from previous questions that 0xFE =

0xFFFE = 0xFFFFFFFE = -2

So, Decaf is printed on the computer monitor

screen of target machine.

if ((unsigned char) x > y) printf("Latte ");

casting x (0xDECAF000) to a char -> 8 bits, we

get 0x00 = 0 (unsigned value)

promoting it to 16 bits still gives us 0

0x0000 > 0xCAFE

without a calculator, we can see that this is not

the case.

So, Latte is NOT printed on the computer monitor

screen of target machine.

The answer (Caf Decaf) is not one of the options.

8. Which range of values can be stored in the variable y declared in the C fragment

code of Question 7 above?

a. [0 .. 216]

b. [-128 .. 127]

c. [0 .. 216-1]

d. [0 .. 215 – 1]

e. None of the above

unsigned short y = 0xCAFE;

y is declared as an unsigned short -> 16 bits

so range of unsigned short is [0 .. 216 -1]

which is not one of the options sbove.

Part 2 – The weight of each question is indicated in [] – Write your answer below each

question unless instructed otherwise.

1. [Total marks: 15] Consider the following function mystery written in x86-64

assembly code, where the parameter x is in the register %edi and the parameter y is

in the register %esi:

 .globl mystery power Line 1

power mystery: # x -> %edi, y -> %esi Line 2

 xorl %eax, %eax Line 3

 movl $1, %r8d Line 4

loop .L3: Line 5

 addl $1, %eax Line 6

 imull %edi, %r8d Line 7

 cmpl %eax, %esi Line 8

 jne .L3 loop Line 9

 movl %r8d, %eax Line 10

 ret Line 11

a. [3 marks] If we call this function as follows: mystery(x, y) where x = 2

and y = 3, what value will it return?

Answer: 8

b. [2 marks] Replace the label .L3 with a more descriptive label name. Do this

replacement in the above code.

Possible answer: loop

c. [2 marks] Rename this function with a more descriptive name. Do this renaming in

the above code.

Possible answer: power or pow

xy -> x is raised to the power y

d. [2 marks] What is the data type of the parameters and the return value of this

function? Express your answer using C data types.

Answer: int or unsigned int

e. [2 marks] Replace Line 3 with another equivalent x86-64 instruction, i.e., an

x86-64 instruction that will produce the same result, but is not a xor*

instruction.

Answer: Line 3: xorl %eax, %eax

The purpose of this instruction is to “zero” the register %eax.

Possible replacement: Line 3: movl $0, %eax

f. [2 marks] Replace Line 6 with another equivalent x86-64 instruction, i.e., an

x86-64 instruction that will produce the same result, but is not an add*

instruction.

Answer: Line 6: addl $1, %eax

The purpose of this instruction is to increment the value of the

register %eax by 1.

Possible replacements: Line 6: incl %eax

Line 6: leal 1(%eax), %eax

g. [2 marks] On Line 6 and Line 8, the register %eax is used for a different

purpose than holding the return value. For what purpose is the register %eax used

on those two lines?

Answer: On Line 6 and Line 8, the register %eax is used as a loop

increment or a loop counter, expressing the number of times the loop

executes. At every loop iteration, %eax is incremented by 1 (Line 6)

then compare to y (Line 8). The loop terminates when %eax equals

the value of y (the power to which we are raising x).

2. [Total marks: 14] Consider a floating point number encoding scheme based on the

IEEE floating point format and defined as follows:

 It uses 7 bits.

 There is one sign bit s.

 The exp can be any number in the range [0 .. 31].

From the above, we gather:

 the format is: s exp frac

 exp is 5 bits (k = 5) and

 frac is 1 bit1 (1 bit for s + 5 bits for exp + 1 for frac = 7 bits)

 since this floating point number encoding scheme is based on the

IEEE floating point format, the following equations hold:

o V = (-1)s M 2E

o E= exp – bias (for normalized numbers)

o M = 1 + frac (for normalized numbers)

o E= 1 – bias (for denormalized numbers)

o M = frac (for denormalized numbers)

o bias = 2k-1 – 1 (for normalized and denormalized numbers)

a. [2 marks] Compute the bias of this IEEE-like floating point number encoding

scheme described above and show your work:

Answer: k = 5

bias = 2k-1–1 = 25-1 – 1 = 24 – 1 = 16 – 1 = 15

b. [7 marks] Encode the value 24.510 using this IEEE-like floating point number

representation described in this question. Show all your work. Clearly show the

resulting bit pattern and label its three sections s, exp, frac.

Answer: Step 1) 24.510 is a positive number so s = 0

Step 2) R2B(24.510)

=> 24 – 16 (24) = 8 and 0.5 - 0.5 (2-1) = 0

8 - 8 (23) = 0

24.510 => 11000.12

Step 3) normalize 11000.12 => 1.100012 x 24

Step 4) Using V = (-1)s M 2E

1) E= exp – bias => exp = E + bias

=> exp = 410 + 1510 = 1910 since E = 410

=> U2B(1910) = 100112 (k = 5)

2) M = 1 + frac => frac = M - 1

=> frac = 1.100012 – 1 => 0.100012 since

M = 1.100012

=> frac = 100012 (ignoring “0.”)

but since frac only has 1 bit, 100012

cannot be stored in frac, so we need to

round frac .100012 => .12

=> MSBit is the rounding position (in blue)

=> since the value of the rest of the bits

(00012 = 0.03125 (2-5) - see table below) < ½

the worth of rounding position (½ of 0.5 =

0.25), then we round down which means we

only discard the bits 00012 from .100012)

Step 5) Using the format: s exp frac

the resulting bit pattern encoding 24.510

in the IEEE-like floating point number

representation described in this question

is: 0 10011 1

s exp frac

c. [2 marks] Write the “range” (non-contiguous) of real numbers (excluding +/-

infinity and NAN) that can be encoded using this IEEE-like floating-point

representation described in this question. Express this range using the bit patterns

(not the actual real numbers).

Answer: “range” (non-contiguous) of real numbers

(excluding +/- infinity and NAN) that can be

encoded using this IEEE-like floating-point

representation described in this question

(expressed using the bit patterns):

[1 11110 1 .. 0 11110 1]

d. [3 marks] Can 6553610 be encoded as a normalized number in this IEEE-like

floating point representation? Briefly explain why/why not.

Hint: Use your range in the above question and the table below.

Answer: 6553610 cannot be encoded as a normalized number

in this IEEE-like floating point representation

because expressed as V = (-1)s M 2E

6553610 is V = (-1)0 1.0 216 = 216 (see table below)

E= exp – bias => exp = E + bias

exp = 1610 + 1510 = 3110 since E = 1610

and U2B(3110) = 111112 (k = 5) which is outside

the range for exp as indicated in the range given

as the answer to the above question:

[1 11110 1 .. 0 11110 1]

When exp = 111112 for k = 5, it indicates

overflow, i.e., one of the special cases.

Table of Powers of 2

Power of 2x Value Power of

2x

Value

0 1

1 2 -1 1/2 0.5

2 4 -2 1/4 0.25

3 8 -3 1/8 0.125

4 16 -4 1/16 0.0625

5 32 -5 1/32 0.03125

6 64 -6 1/64 0.015625

7 128 -7 1/128 0.0078125

8 256 -8 1/256 0.00390625

9 512 -9 1/512 0.001953125

10 1024 -10 1/1024 0.0009765625

11 2048

12 4096

13 8192

14 16384

15 32768

16 65536

