.globl
Copy:
A in rdi,
xorl %eax,

copy

%eax

since this function is a leaf function,

xorl %ecx, %ecx
For each row
rowLoop:
mowl 50, %r8d
cmpl %edx, %ecx
jge doneWithRows

For each cell of this row
colLoop:

cmpl %edx, %r8d

jge doneWithCells

C in rsi, N in edx

¥ set eax to 0

=0

column number{j /in r8d -> j = 0
loop as long a5 i - N < O

loop as long as jJ - N < O

Compute the address of current cell that is copied from & to C

since this function is a leaf

Memory computation: A[i][]]

if ¢ and R => N
movl %edx, %rlod
imull %ecx, %rl0d
addl %r8d, %rlo0d

~» imull $1, %rlod
movg srl0, 3rll
addg %rdi, %rilo0
addg %rsi, %rill

Copy R[L *

movbh (%rl0), %rSb
movbh %r%b, (%rll)
incl %r8d

jmp colLoop

Go to next row

doneWithCells:
incl %ecx
jmp rowLoop

doneWithRows:
ret

R o o T

#
#

#

=

= A +
=L + L *
rldd = N
riod = i*N
i*N + j
rld = L *
rll =L *
rld = A +
rll = C +
(i*N +

(i*N + j)] to C[L *
temp = A[L *

clL

column number j++

&

(1 * L) =R + L * (
(1*N +)

(i*N + j) -» L is char
(1*N + 3J)

L * (i*N + 5)

L * (i*N + 5)

(1Byte)

7)1
(1*N + 7)1

(1*N + J)] = temp

(in r&d)

go to next cell

row number i++

(in ecx)

Play it again, Sam!

bye! bye!

(1 * Q)

no need to save caller-saved registers rcx and rf
row number i is in ecx ->»
O —

function, no need to save caller-saved registers rl0 and rill
(1 * ¢ * L) +

+3)

[e———

