
CMPT 295 – Fall 2021 

Assignment 7 

Objectives: 

 Designing and evaluating instruction sets (ISA) 

 

Submission: 

 Submit your document called Assignment_7.pdf, which must include your answers to all 

of the questions in Assignment 7. 

o Add your full name and student number at the top of the first page of your 

document Assignment_7.pdf. 

 Submit your assignment Assignment_7.pdf on CourSys. 

 

Due: 

 Friday Nov. 12 at 23:59:59. 

 Late assignments will receive a grade of 0, but they will be marked (if they are submitted 

before the solutions are posted on Monday) in order to provide feedback to the 

student. 

 

Marking scheme: 

 The marks assigned to each question is indicated in [ ]. 

 This assignment will be marked for correctness. 

 A solution will be posted on Monday after the due date. 

 

Note: In our lectures, we designed and evaluated the instruction set called x295M. In this 

assignment, we shall design and evaluate three (3) other instruction sets: x295, x295+ 

and x295++. 

Be aware: All of these 4 instruction sets are different! 

 



CMPT 295 – Fall 2021 

Instruction Set 1 – x295 

A. Description of x295 instruction set architecture (ISA) 

 Data type size : 16 bits (for example, an integer has 16 bits) 

 Memory model 

o Size of memory: 212 × 16 

 m = 12 -> this means that each memory address has 12 bits. 

 n = 16 -> this means that the address resolution, i.e., the smallest 

addressable memory “chunk”, is a memory “chunk” of 16 bits. 

 Each memory “chunk” of 16 bits has a distinct memory address. 

 This is not a byte-addressable computer 

o Word size: 16 bits -> this means that when the microprocessor reads from/writes 

to memory, it reads/writes 16 bits at a time. 

 In this ISA, the address resolution == the word size. It is not always the case. 

o Number of registers: 0 

 Instruction set (assembly and machine instructions) 

o Maximum number of instructions: 16 

 This means that we need a maximum of 4 bits to distinctly represent each 

of these 16 instructions. 

 Therefore, the size of the opcode field, in the machine instructions, will be 

4 bits (24 = 16) 

o Operand Model:  

 Memory (only) – only memory locations are operands, no registers are 

used as operands except the register representing the stack pointer 

 3-operand model 

 In the machine instructions, the order of these operands is: Dest, Src1, Src2 

o Memory addressing mode: Direct, Base and Displacement and Indirect 

 These may not all be used in the instructions found in this assignment. 

o Assembly instructions (in this assignment we shall only define a subset of these 

instructions) and their format and meaning:  

 ADD a,b,c Meaning: M[c] <- M[a] + M[b] 

 SUB a,b,c Meaning: M[c] <- M[a] - M[b] 

 MUL a,b,c Meaning: M[c] <- M[a] * M[b] 



CMPT 295 – Fall 2021 

 In these assembly instructions, the order of the operands is: Src1, Src2, 

Dest. 

o Machine code format: 

 
 

4 bits                                                 4 bits                                               4 bits 

This format is made of 3 words, each word is 16 bits in length (word size). This 

format must be used to form all three machine instructions corresponding to the 

three assembly instructions listed above. 

The bit patterns for the opcode are: 

Opcode (instruction) Bit pattern (4 bits) 

padding 0000 

ADD 0001 

SUB 0010 

MUL 0011 

… … 

B. Evaluation of x295 instruction set 

C program x295 assembly program x295 machine code 

z = (x + y) * (x – y); ADD x, y, tmp1 

 

 

SUB x, y, tmp2 

 

 

MUL tmp1, tmp2, z 

(where tmp1 and tmp2 
are memory addresses 
holding temporary results) 

0001 <Dest 12 bits> 

0000 <Src1 12 bits> 

0000 <Src2 12 bits> 

 

0010 <Dest 12 bits> 

0000 <Src1 12 bits> 

0000 <Src2 12 bits> 

 

0011 <Dest 12 bits> 

0000 <Src1 12 bits> 

0000 <Src2 12 bits> 

 

Note: In the above machine 
code, we abstractly express 
the memory addresses as 
<Dest 12 bits>, <Src1 

12 bits> and <Src2 12 
bits> as opposed to using 
actual memory addresses in 

opcode Dest (12 bits) padding padding Src1 (12 bits) Src2 (12 bits) 



CMPT 295 – Fall 2021 

the memory address fields 
(fields in purple). 

1. The first step in evaluating our x295 instruction set is to write an assembly program using 

the assembly instructions defined by our x295 instruction set. This step has been done 
for us and is displayed in the table above in column “x295 assembly program”. 

Note that as we are performing this step, we are verifying that our x295 instruction set 
contains sufficient instructions to allow us to write such program in x295 assembly code. 

(There is nothing for us to do in this part of our x295 instruction set evaluation. We can 

use this as a model to follow when answering the rest of this assignment.) 

Once we have our x295 assembly program, we need to transform it into its x295 
machine code equivalent. This step has been done for us and is displayed in the table 
above in column “x295 machine code”. 

Note that as we are performing this step, we are verifying that our x295 instruction set 

contains sufficient instructions to allow us to write such program in x295 machine code. 

(Again, there is nothing for us to do in this part of our x295 instruction set evaluation. 
We can use this as a model to follow when answering the rest of this assignment.) 

2. The next step is evaluating our x295 instruction set is to execute (hand trace) our 

assembly program or its corresponding machine code and using the metric (criteria) called 
memory traffic, we count the number of memory accesses our program makes during its 
execution. In other words, we count how many time the execution of our program 
required a word (16 bits) to be read from or written to memory. 

Note that as we are performing this step, we are verifying that the meaning of the 

instructions contained in our x295 instruction set is such that hand tracing these 

instructions does indeed produce the result the software developer that wrote the above 

C program expected. This is to say that if we use the test case: x = 3, y = 2 when hand 

tracing our x295 assembly code (or its machine code equivalent), we would obtain the 

same (expected) result as if we were to hand trace the C program itself. 

For us to do: As part of this step in the evaluation of our x295 instruction set, we are 
asked to evaluate the number of word size memory accesses made by the 
microprocessor when it is fetching and decoding/executing each assembly code 
statement (or machine code statement) listed in the left column in the table below. Also 
we need to justify our count. Finally, let’s total our counts. [2 marks] 



CMPT 295 – Fall 2021 

x295 program  

(in assembly and machine 
code) 

Fetch 

(number of word size 
memory accesses) 

+ 

Provide an explanation  
explaning the count 

Decode/Execute 

(number of word size 
memory accesses) 

+  

Provide an explanation  
explaning the count 

ADD x, y, tmp1 

 

 

0001 <Dest 12 bits> 

0000 <Src1 12 bits> 

0000 <Src2 12 bits> 

Count:  

Explanation: 

Count:  

Explanation: 

SUB x, y, tmp2 

 

 

0010 <Dest 12 bits> 

0000 <Src1 12 bits> 

0000 <Src2 12 bits> 

Count:  

Explanation: 

Count:  

Explanation: 

MUL tmp1, tmp2, z 

 

 

0011 <Dest 12 bits> 

0000 <Src1 12 bits> 

0000 <Src2 12 bits> 

Count:  

Explanation: 

Count:  

Explanation: 

Grand Total:  Total: Total: 

3. We also evaluate our instruction set using the metric (criteria) called static code size: 

o The code size of our x295 program is 3 instructions. 

o And since each instruction is 3 word long, the code size of our x295 program is 9 

words. 



CMPT 295 – Fall 2021 

(There is nothing for us to do in this part of our x295 instruction set evaluation. We can 

use this as a model to follow when answering the rest of this assignment.) 

 

Instruction Set 2 – x295+ 

A. Description of x295+ instruction set architecture (ISA) 

Considering the results of our x295 instruction set evaluation, one possible improvement in 

order to reduce the number of memory accesses could be to reduce the size of the machine 

instructions. Since these are made of an opcode and a memory address, we could introduce 

registers which could hold these memory addresses and take less space in the machine code 

than memory addresses (i.e., registers will take fewer bits to identify than memory addresses). 

With the idea of introducing registers, we specified a second instruction set architecture (ISA) 

with the same components as x295, but with the following modifications: 

 Memory model 

o Number of registers: 8 x 16-bit registers 

 This means that we need a maximum of 3 bits to distinctly represent each 

of these 8 (23) registers. 

 Therefore, the size of any register field, in the machine instructions, will be 

3 bits in length. 

 Each register contains 16 bits. 

o The bit patterns to uniquely identify each the registers are: 

Register Bit pattern (3 bits) 
r0 000 

r1 001 

r2 010 

r3 011 

r4 100 

r5 101 

r6 110 

r7 111 

 Instruction set (assembly and machine instructions) 

o Operand Model:  

 Registers 



CMPT 295 – Fall 2021 

 We shall also use memory addresses 

o Assembly instructions:  

 ADD rA,rB,rC Meaning: rC <- rA + rB 

 SUB rA,rB,rC Meaning: rC <- rA - rB 

 MUL rA,rB,rC Meaning: rC <- rA * rB 

 LOAD a,rC Meaning: rC <- M[a] 

 STORE rA,c Meaning: M[c] <- rA 

o Machine code format: 

Format 1:  

 

This format is made of 16 bits (1 word) and it can be used to form the machine 

instructions corresponding to the ADD, SUB and MUL assembly instructions. 

XXX -> these X’s can be either 0’s or 1’s – they are not used by the microprocessor. 

Format 2: 

 

This format is made of 32 bits (2 words) and it can be used to form the machine 

instructions corresponding to the LOAD assembly instruction. 

XXX, XXXXXX and XXXX -> these X’s can be either 0’s or 1’s. – they are not used by 
the microprocessor. 

Format 3: 

 

This format is made of 32 bits (2 words) and it can be used to form the machine 

instructions corresponding to the STORE assembly instruction. 

XXX and XXXXXX -> these X’s can be either 0’s or 1’s– they are not used by the 
microprocessor. 

When the microprocessor decodes the opcode for a LOAD instruction, it will 

know where to find the field Dest and where to find the field Src in the 

instruction itself (Dest -> the first field after the opcode in the first word of the 

insruction and Src -> the memory address located in the least significant 12 bits 

of the second word composing this instruction). It will also know to ignore all 

other bits (X’s) in the instruction. 

Opcode 

(4 bits) 

 

XXX padding XXXXXX Memory address of 

Src (12 bits) 

Dest 

(3 bits) 

Opcode 

(4 bits) 

 

Dest 

(3 bits) 

 

Src1 

(3 bits) 

Src2 

(3 bits) 

XXX 

Data manipulation  

type of instructions 

Data transfer  

type of instructions 

Opcode 

(4 bits) 

 

XXX padding XXXXXX Memory address of 

Dest (12 bits) 

Src 

(3 bits) 

 



CMPT 295 – Fall 2021 

When the microprocessor decodes the opcode for a STORE instruction, it will 

know where to find the field Src and where to find the field Dest in the 

instruction itself (Src -> the second field after the opcode in the first word of the 

insruction and Dest -> the memory address located in the least significant 12 bits 

of the second word composing this instruction). It will also know to ignore all 

other bits (X’s) in the instruction. 

Note: About ISA design principles: When creating formats to encode instruction 

set … 

 As few of them as possible were created.  

 The fields that have the same purpose (such as Opcode, Dest and Src) 

are placed in the same location in as many of the formats as possible. 

This helps simplify the design of the microprocessor (its datapath). 

The bit patterns for the opcode are: 

Opcode (instruction) Bit pattern (4 bits) 

padding 0000 

ADD 0001 

SUB 0010 

MUL 0011 

LOAD 1010 

STORE 1011 

… … 

B. Description of x295+ instruction set 

C program x295+ assembly program x295+ machine code 

z = (x + y) * (x – y);  1010 000 XXX XXXXXX 

0000 <Src 12 bits> 

 

1010 001 XXX XXXXXX 

0000 <Src 12 bits> 

 

0001 010 000 001 XXX 

 

0010 011 000 001 XXX 



CMPT 295 – Fall 2021 

 

0011 100 010 011 XXX 

 

1011 XXX 100 XXXXXX 

0000 <Src 12 bits> 

1. The first step in evaluating our x295+ instruction set is to translate the C program into 

 an assembly program using the assembly instructions defined by our x295+ 
instruction set and 

 its corresponding machine code using the machine instructions defined by our 
x295+ instruction set. 

For us to do: Our task is to complete the middle column (assembly code) in the table 
above. The machine code has already been given. [3 marks] 

2. The next step in evaluating our x295+ instruction set is to execute (hand trace) our 
assembly program or its corresponding machine code and using the metric (criteria) called 
memory traffic, we count the number of memory accesses our program makes during its 
execution. In other words, we count how many time the execution of our program 
required a word (16 bits) to be read from or written to memory. 

For us to do: As part of this step in the evaluation of our x295+ instruction set, complete 
the table below. [4 marks] 

x295+ program  

(in assembly and machine 
code) 

Fetch 

(number of word size 
memory accesses) 

+ 

Provide an explanation  
explaning the count 

Decode/Execute 

(number of word size 
memory accesses) 

+  

Provide an explanation  
explaning the count 

Assembly code: 

 

 

 

 

Machine code: 

Count:  

Explanation: 

Count:  

Explanation: 



CMPT 295 – Fall 2021 

1010 000 XXX XXXXXX 

0000 <Src 12 bits> 

Assembly code: 

 

 

 

Machine code: 

1010 001 XXX XXXXXX 

0000 <Src 12 bits> 

Count:  

Explanation: 

Count:  

Explanation: 

Assembly code: 

 

 

 

Machine code: 

0001 010 000 001 XXX 

Count:  

Explanation: 

Count:  

Explanation: 

Assembly code: 

 

 

 

Machine code: 

0010 011 000 001 XXX 

Count:  

Explanation: 

Count:  

Explanation: 

Assembly code: 

 

 

Machine code: 

0011 100 010 011 XXX 

Count:  

Explanation: 

Count:  

Explanation: 

Assembly code: 

 

 

 

Machine code: 

Count:  

Explanation: 

Count:  

Explanation: 



CMPT 295 – Fall 2021 

1011 XXX 100 XXXXXX 

0000 <Src 12 bits> 

Grand Total:  Total: Total: 

3. We also evaluate our instruction set using the metric (criteria) called static code size. For 

us to do: Fill in the blanks in the statement below: [0.5 marks] 

o The code size of our x295+ program is __________ instructions ( __________ words). 

Instruction Set 3 – x295++ 

A. Description of x295++ instruction set architecture (ISA) 

Would reducing the number of operands to the instructions in our instruction set decrease 

the number of memory accesses the microprocessor does when fetching, decoding and 

executing our program? 

Would introducing another instruction, namely COPY, in our instruction set also decrease the 

number of memory accesses the microprocessor does when fetching. decoding and executing 

our program? 

With the above two ideas in mind, we specified a third instruction set architecture (ISA) with 

the same components as x295 and x295+, but with the following modifications: 

 Instruction set (assembly and machine instructions) 

o Operand Model:  

 2 operand model 

o Assembly instructions:  

 ADD rA,rC Meaning: rC <- rA + rC 

 SUB rA,rC Meaning: rC <- rA - rC 

 MUL rA,rC Meaning: rC <- rA * rC 

 COPY rA,rC Meaning: rC <- rA 

 LOAD a,rC Meaning: rC <- M[a] 

 STORE rA,c Meaning: M[c] <- rA 

o Machine code formats: 

 

Format 1:  

 
Opcode 

(4 bits) 

 

Dest 

(3 bits) 

 

Src 

(3 bits) 

XXXXXX 



CMPT 295 – Fall 2021 

This format is made of 16 bits (1 word) and it can be used to form the machine 

instructions corresponding to the ADD, SUB, MUL and COPY assembly instructions. 

XXXXXX -> these X’s can be either 0’s or 1’s. 

The bit patterns for the opcode are: 

Opcode (instruction) Bit pattern (4 bits) 

padding 0000 

ADD 0001 

SUB 0010 

MUL 0011 

COPY 1001 

LOAD 1010 

STORE 1011 

… … 

B. Evaluation of x295++ instruction set 

C program x295++ assembly 
program 

x295++ machine code 

z = (x + y) * (x – y);   

1. The first step in evaluating our x295++ instruction set is to translate the C program into 

 an assembly program using the assembly instructions defined by our x295++ 
instruction set and 

 its corresponding machine code using the machine instructions defined by our 
x295++ instruction set. 

For us to do: Our task is to complete the middle column (assembly code) and the right 
column (machine code) in the table above. [5 marks] 

Challenge: Can you express your x295++ assembly program and machine code 
with the fewest number of instructions. This may require you to first 
readjust the above C program. 

2. The next step in evaluating our x295++ instruction set is to execute (hand trace) our 
assembly program or its corresponding machine code and using the metric (criteria) called 
memory traffic, we count the number of memory accesses our program makes during its 
execution. In other words, we count how many time the execution of our program 
required a word (16 bits) to be read from or written to memory. 



CMPT 295 – Fall 2021 

For us to do: As part of this step in the evaluation of our x295++ instruction set, 

complete the table below. [4 marks] 

x295++ program  

(in assembly and machine 
code) 

Fetch 

(number of word size 
memory accesses) 

+ 

Provide an explanation  
explaning the count 

Decode/Execute 

(number of word size 
memory accesses) 

+  

Provide an explanation  
explaning the count 

... expand the table by adding as many rows as needed using the 

row format seen in the tables above ... 

Grand Total:  Total: Total: 

3. We also evaluate our instruction set using the metric (criteria) called static code size. For 

us to do: Fill in the blanks in the statement below: [0.5 marks] 

o The code size of our x295++ program is _________ instructions ( _________ words). 

Conclusion 

For us to do: Considering the memory traffic metric (number of memory accesses required 

by our test program), which instruction set (x295, x295+ or x295++) produces the most 

time efficient program? [0.5 marks] 

 

For us to do: Considering the static code size metric (number of instructions/words required 

to implement our test program), which instruction set (x295, x295+ or x295++) produces 

the smallest program? [0.5 marks] 

 

 


