
CMPT 295 – Fall 2021

Assignment 5

Objectives:

 x86-64 function calls and stack

 Investigating the size of some x86-64 assembly instructions

Submission:

 Submit your document called Assignment_5.pdf om CourSys.

o Add your full name and student number at the top of the first page of your document.

 If you write your answers by hand (as opposed to using a computer application to

write them), when putting your assignment document together, do not take photos of

your assignment sheets! Scan them instead! Better quality -> easier to read -> easier to

mark!

Due:

 Friday Oct. 29 at 4pm on CourSys

 Late assignments will receive a grade of 0, but they will be marked (if they are submitted

before the solutions are posted on Monday) in order to provide feedback to the

student.

Marking scheme:

 All questions of this assignment will be marked for correctness.

 The amount of marks for each question is indicated as part of the question.

 A solution will be posted on Monday after the due date.

1. [10 marks] x86-64 function calls and stack

a. Hand trace the code from our Lab 4 (main.c , main.s, p1.c, p1.s, p2.c and p2.s)
using the test case, i.e., x = 6, y = 9, buf[40].

CMPT 295 – Fall 2021

 As you do so, draw the corresponding Stack Diagram for the entire program, i.e.,
until you reach (but have not yet executed) the ret instruction of the main
function. To do so, you can either print the “Stack Diagram” sheet at the end of
this assignment and do the drawing by hand, then scan the result and include it
into this assignment document OR do the drawing by electronically annotating the
“Stack Diagram” sheet at the end of this assignment then include the result into
this assignment document.

 The use of the Register Table is optional: use it only if you find it useful. You do
not have to include it as part of your assignment document.

 Indicate the movement of %rsp by crossing its old location and rewriting “%rsp”
to indicate its new location (as we have done in our lectures and Lab 4).

 Cross the content of the stack that has been popped.

 When the value of a stack location is changed, cross its old value and write the
new value in the same stack location.

 Make sure you include the content of buf in your Stack Diagram.

 When drawing your stack diagram, you do not have to show the effect on the stack

of the 5 call instructions at lines 33, 43, 45 and 57 in main.s and at line 47 in

p1.s. These are calls to printf(…), puts(…) and sprintf(…). In other

words, you do not have to add the return addresses associated to these 5 calls

onto the stack.

 Hint: The solution to Participation Activity 6 (which will be posted after its

deadeline on Monday) will give us a great head start!

b. Modify main.c by reducing the size of buf[] from 40 to 24.

 Remake the code and hand trace it using the following test case, i.e., x = 6, y =
9, buf[24].

 Repeat the instructions found in the section a. above and create a second drawing
of the stack using the Stack Diagram sheet found at the end of this assignment.

 Make sure you include the content of buf in your Stack Diagram drawing.

 On the same sheet as your Stack Diagram, asnwer the question:What happens to

the “canary value” in this situation?

2. [10 marks] Investigating the size of some x86-64 assembly instructions

CMPT 295 – Fall 2021

Complete the following three tables:

X86-64 Instructions Their size (in bytes)

xorq %rax, %rax

xorl %eax, %eax

movq $0, %rax

movl $0, %eax

X86-64 Instructions Their size (in bytes)

addl $1, %eax

leal 1(%eax), %eax

incl %eax

X86-64 Instructions Their size (in bytes)

addl $8, %eax

leal 8(%eax), %eax

To complete the above tables, you must:

 Write an assembly program and include all the above x86-64 instructions in it. Of

course, this program is going to be rather nonsensical. Not a problem!

 Compile your program.

 Use the objdump tool on the resulting object file you obtained from the

compilation process.

 Looking at the result will lead you to the answer, i.e., the size of each of these x86-

64 instructions in bytes.

 In each table, bold the instruction that is the most space efficient.

CMPT 295 – Fall 2021

 Copy the content of your program (*.s) into this assignment (into this

Assignment_5.pdf document).

 Copy the result you obtained from the objdump tool into this assignment (into this

Assignment_5.pdf document).

CMPT 295 – Fall 2021

Base + Displacement Stack Purpose

Register Table:

