
CMPT 295 – Fall 2021

Assignment 4

Objectives:

 Hand tracing assembly code

 Translating assembly code into C code

 Writing x86-64 assembly code

Submission: Assignment 4 is a little unusual

 Doing Assigment 4 will help you to prepare for Midterm 1 even though Assigment 4 is
due after our Midterm 1.

 On Friday, Oct. 15 by 4pm, submit the following 3 documents on CourSys:

o Assignment_4.pdf which is to contain only your solution to Question 2. You do
not have to submit your solution to Question 1. Do Question 1 as part of your
studying for our Midterm 1.

o main.c and calculator.s, i.e., your solution to Question 3.

 Late assignments will receive a grade of 0, but they will be marked (if they are submitted
before the solutions are posted on the Monday after the due date) in order to provide
feedback to the student.

Marking scheme:

 This assignment will be marked as follows:

o Question 1 is not marked. Do Question 1 as part of your studying for our
Midterm 1.

o A solution to Question 1 will be posted along with this Assignment 4.

o Questions 2 and 3 will be marked for correctness.

o Solution to Question 2 and Question 3 will be posted on the Monday after
the due date.

 The amount of marks for each question is indicated as part of the question.

1. [0 marks] Hand tracing assembly code - Do Question 1 as part of your studying for our

Midterm 1.

CMPT 295 – Fall 2021

Consider the following code:

C function abs(…) abs(…)version 1 (based on abs(…)version 2

 a non-optimized gcc version) (an optimized gcc version)

The left column contains the C function abs(…), the middle column contains the assembly

code version of the C function abs(…) we wrote in class (we shall call it “version 1”) and the

right column contains the assembly code version of abs(…) the gcc compiler may produce

when it assembles the C function abs(…) using level 2 optimization (“–O2”). We shall call it

“version 2”.

Notice how gcc assembles abs(…) without branching, i.e., without affecting the execution

flow (without using the jump instructions). We shall see in our next Unit (Chapter 4 of our

textbook) that branching is rather unpredictable and may cause problem in the execution

pipeline of the microprocessor. For this reason, the assembly code version (version 1) of

abs(…) which branches may run more slowly.

In this question, you are asked to hand trace both versions of abs(…) using 2 test cases

 Test case 1: x = 7, expected result: 7

 Test case 2: x = -7, expected result: 7

and show the result of executing each instruction. In doing so, complete the tables below:

Note:

 The first table has been completed as an example. Feel free to use it as a model when

you complete the other three tables.

 Remember that x – (-y) = x + y.

CMPT 295 – Fall 2021

abs(…) version 1
Test case 1: x = 7

Expected result: 7

Result of executing instruction in the left column

movl %edi, %eax Copy content of %edi (x = 7) into %eax,

i.e.,

%edi <- 00000000000000000000000000000111

 <- 29 0’s ->

%eax <- 00000000000000000000000000000111

 <- 29 0’s ->

cmpl $0, %eax 3 outcomes: x – 0 > 0

 x – 0 < 0

 x – 0 = 0

Here since %eax contains 7, then the only

possible (true) outcome is 7 – 0 > 0,

i.e., when the microprocessor evaluates

7 – 0, it obtains the result 7. This

result (being greater than 0: 7 > 0) sets

the condition codes to “g” and

therefore …

jge endif … the jump instruction is executed

negl %eax and this instruction is not executed

endif: ret and this instruction is executed.

abs(…) version 1

Test case 2) x = -7

Expected result: 7

Result of executing instruction in the left column

movl %edi, %eax

cmpl $0, %eax

jge endif

negl %eax

endif: ret

CMPT 295 – Fall 2021

abs(…) version 2
Test case 1) x = 7

Expected result: 7

Result of executing instruction in the left column

movl %edi, %edx

movl %edi, %eax

sarl $31, %edx

xorl %edx, %eax

subl %edx, %eax

ret

abs(…) version 2
Test case 2) x = - 7

Expected result: 7

Result of executing instruction in the left column

movl %edi, %edx

movl %edi, %eax

sarl $31, %edx

xorl %edx, %eax

subl %edx, %eax

ret

CMPT 295 – Fall 2021

2. [8 marks] Translating assembly code into C code - Read the entire question before

answering it!

Consider the following assembly code:

long func(long x, int n)

x in %rdi, n in %esi, result in %rax

func:

movl %esi, %ecx

movl $1, %edx

movl $0, %eax

jmp cond

loop:

movq %rdi, %r8

andq %rdx, %r8

orq %r8, %rax

salq %cl, %rdx # shift left the value stored in %rdx by

 # an amount related to the value in %cl*

cond:

testq %rdx, %rdx # Value in %rdx is >0, <0, =0 ?

jne loop # jump if %rdx != 0

 # fall thru to ret if %rdx = 0

ret

* Section 3.5.3 of our textbook explains how a shift instruction works when it has the

register %cl as one of its operands. Check it out!

The assembly code above was generated by compiling C code that had the following overall
form:

long func(long x, int n) {

long result = _________;

long mask;

for (mask = _________ ;mask _________ ;mask = _________)

result |= ___________________________ ;

return result;

}

CMPT 295 – Fall 2021

Your task is to fill in the missing parts of the C function func above to get a program
equivalent (note: it may not be exactly the same) to the generated assembly code displayed
above it. You will find it helpful to examine the assembly code before, during, and after the
loop to form a consistent mapping between the registers and the C function variables.

You may also find the following questions helpful in figuring out the assembly code. Note
that you do not have to submit the answers to the five questions below as part fo
Assignemnt 4 as these answers will be reflected in the C function you are asked to complete
and submit.

a. Which registers hold program values x, n, result, and mask?

b. What is the initial value of result and of mask?

c. What is the test condition for mask?

d. How is mask updated?

e. How is result updated?

CMPT 295 – Fall 2021

3. [12 marks] Writing x86-64 assembly code

Download Assn4_Q3_Files.zip, in which you will find a makefile, main.c and an

incomplete calculator.s. The latter contains four functions implementing arithmetic

and logical operations in assembly code.

Your task is to complete the implementation of the three incomplete functions, namely,

plus, minus and mul. In doing so, you must satisfy the requirements found in each of the

functions of calculator.s. You must also satisfy the requirements below.

You will also need to figure out what the function XX does and once you have done so, you

will need to change its name to something more descriptive (in main.c and in

calculator.s) and add its description in the indicated place in calculator.s.

Requirements:

 Your assembly program must follow the following standard:

 Your code must be commented such that others (i.e., TA’s) can read your code
and understand what each instruction does.

 About comments:

 Comment of Type 1: Here is an example of a useful comment:
cmpl %edx, %r8d # loop while j < N

 Comment of Type 2: Here is an example of a not so useful comment:
cmpl %edx, %r8d # compare %r8d to %edx

Do you see the difference? Make sure you write comments of Type 1.

 Also, describe the algorithm you used to perform the multiplication in a

comment at the top of mul function.

 Your code must compile (using gcc) and execute on the target machine.

 Each of your code files (main.c and calculator.s) must contain a header

comment block including the filename, the purpose/description of your

program, your name and the date.

 For all of the four functions, the register %edi will contain the argument x and

the register %esi will contain the argument y. The register %eax will carry the

return value.

 You may use registers %rax, %rcx, %rdx, %rsi, %rdi, %r8, %r9, %r10

and %r11 as temporary registers.

 You must not modify the values of registers %rbx, %rbp, %rsp, %r12, %r13,

%r14 and %r15. We shall soon see why.

 You cannot modify the given makefile.

CMPT 295 – Fall 2021

Hint for the implementation of the mul function:

Long ago, computers were restricted in their arithmetic prowess and were only able to

perform additions and subtractions. Multiplications and divisions needed to be implemented

by the programmer using the arithmetic operations available.

