CMPT 295

Unit — Microprocessor Design & Instruction Execution
Lecture 26 — Infro to Logic Design

Last Lecture

= [SA design
= MIPS
» Created our own x295M: “Memory only”

= |SA Evaluation

= Examining the effect of the von Neumann bottleneck on the
execution fime of our program by counting number of
memory accesses

Mem9ry »The fewer memory accesses our program makes, the faster it
Traffic executes, hence the “better” it is

= |[mprovements:

» Decreasing effect of von Neumann bottleneck by reducing

the number of memory accesses

And one way to achieve this is by introducing registers in the design of the ISA -> makes machine instructions shorter.
Reducing the number of operands may also help (but not always).

Today's Menu

» Implementation of a microprocessor (CPU) based on an ISA
» Execution of machine instructions (datapath)
= |ntro to logic design

The Big Picture

Now that we have had a
look at a few instruction

set architectures (ISA), i.e., C program (.c) C Preprocessor
— sum store.cC

= Specification of various _
models (memory model, Preprocessed Source . | C Compiler
computational model, — -
operand model, efc ...),
and ...

Assembly program (.s)

— sum store.s | Assembler

= Design of instruction set (or
subset) (assembly
instructions and their

corresponding machine g Object (.0) Linker
instructions, their formats, T osum store.o
efc.) ... Executable Loader
. . —>» SS
— - ISA - Instruction Set Architecture
, . interface :
.. let’s step over this Computer executes it

intferface and explore
how the microprocessor is

constructed so it can

execute these machine CPU Memory

4 instructions

Datapath s
of a MIPS 32 lines Rug 2 nes

0000000000000100 => 0x00400004

. 00000000010000lOOOOOC000000000005
L Data .

Sneak preview (how CPU hardware updates Register #
the PC in fetch-decode-execute loop): | PC [4»| Address Instruction Registers >ALU Address
(from our Lecture 25) 0x00400000 _ Register # Data
. Consider the memory address '“;::::E“ Register # TL - memory |

0x00400000 i.e.,

0000 0000 0100 0000 0000 0000 0000 ~ Data

which holds the MIPS machine instruction
100011 11101 10001 0000000000000000 FIGURE 4.1 An abstract view of the implementation of the MIPS subset showing the

« PC contains 0x00400000 i.e., major functional units and ther majurrconnactinns ha!:wnan !:hum. All instructions _start by Psi11_g
. . . . the program counter to supply the instruction address to the instruction memory. After the instruction is

32 line bus with SIgﬂCﬂS 0x00400000 IﬂpUT fetched, the register operands used by an instruction are specified by fields of that instruction. Once the
into ADDER with “4" as other in put register operands have been fetched, they can be operated on to compute a memory address (for a load or

o : store), to compute an arithmetic result (for an integer arithmetic-logical instruction), or a compare (for a
ADDER GddS both InpUTS and pI’OdUCGS branch). If the instruction is an arithmetic-logical instruction, the result from the ALU must be written to
0x00400004 i.e., memaory address of a register. If the operation is a load or store, the ALU result is used as an address lo either store a value from
next machine instruction which holds the registers or load a value from memory into the registers. The result from the ALU or memory is written
the MIPS machine instruction back into the register file. Branches require the use of the ALU output to determine the next instruction

address, which comes either from the ALU (where the PC and branch offset are summed) or from an adder

100011 11101 10010 0000000000000100 that increments the current PC by 4. The thick lines interconnecting the functional units represent buses,

5 PC overwritin g Ox00400000 which consist of multiple signals. The arrows are used to guide the reader in knowing how information flows.
Since signal lines may cross, we explicitly show when crossing lines are connected by the presence of a dot

\\ where the lines cross.

Digital circuits

® |n order to understand how the microprocessor executes
these machine instructions (series of 0's and 1's), we need o
have a look at the components of a microprocessor and
Y how they function:

Types of components 1. Combinafional logic -> manipulate bifs (compute functions on
found in a digital system bits e.g., ADD)

suchasa 2. Memory elements -> store bits
MICroprocessor .
3. Clock signals -> regulate the update of memory elements

and what affects the execution speed of these components
such as propagation delay

= S0, we need to understand a few things about digital circuits

Microprocessor

2 Resistor
» Made of resistors, i)

capacitors, diodes, Qv
and transistors

.:'2> Transistors Diodes

Source: https://www .elprocus.com/
semiconductor-devices-types-and-applications

» For example, 10-core Core i/
Broadwell-E (2016) from Intel
contains 3,200,000,000 transistors

Source: https://en.wikipedia.org/wiki/Transistor_count

» | ofs of incredibly small components

Source: https://www.newegg.ca/Product/Product.aspx

Logic gates

= Definition: A logic gafe is an Practical inverter (NOT) circuit
electronic device that can (=g = Ve SN
perform a Boolean function
(AND, NAND, OR, XOR, NOT| \

= On a chip, these can be
made using fransistors, Input
resistors, and diodes

= Here is how a NOT logic gate /‘

Is consfructed:

Source: http://www.cybermike.net/reference/liec_book/Digital/DIGI_3.html

Behaviour of logic gates

» Here is a diagram representing = Here is a diagram representing
the behaviour of an AND logic the behaviour of an OR logic

Forthe lamp - gate: gate:

to turn ON _ both switches must be closed! .. either (or Roth) switfch must be closed!
(for the current A B e

to go ’rhrough " B

the wire) — —

Switch A-Open ="0", Closed="1"

Lamp-0OFF="0" Lamp-0OFF="0"
Switch B - Open ="0", Closed="1" Switch B-Open ="0", Closed="1

ttps://www.electronics-tutorials.ws/boolean/bool_1.html
https://www.electronics-tutorials.ws/boolean/bool_2.html

: & : &
) Lamp-ON="1" Lamp - ON="1"
switch A-Open ="0", Closed="1"

Abstracting using black boxes

» A black box is used to abstract the function of a device

®» The input and output of the device are visible/known

»The idea is that we need to know these in order to use
the device

» The implementation of the devide (what is inside) is
invisible/unknown, i.e., hidden

»The idea is that we do not need 1o know how the
device is implemented in order to use it

» Same thing is tfrue for functions in softwarel

Abstracting logic gates

» |nstead of drawing logic gates using their electronic components,
we hide these components using a black box -> a symiol
simplified representing a logic gate

®» Symbpols:

'::::}-»AB '::D—>A +B ':::)D—>A@B
AND OR XOR

» |nput: asignali.e., 0 or 1 (abstraction of voltage levels) travels
along the input wire/line

= QOutput: After a fime delay (propagation delay t,,), a signal, i.e., 0
or 1 fravels along the output wire/line

» Always active

= As soon as signal (0 or 1) travels along the input wires/lines, the
logical gate produces aresult, i.e., a signal (O or 1) which then travels
along the output wire/line

Abstracting logic gates — cont’'d

= Symbols:

NAND NOR
Lo
NOT BUFFER

(inverter)

Propagation delay t 4

» Definition: Longest time elapsed between the
application of an input and the occurrence of the
corresponding output

= t 4 Often expressed in picosecond (102 seconds)
to nanosecond (107 seconds)

Summary

» We have now startfed 1o explore how the microprocessor
executes machine instructions (series of 0's and 1's)

= More specifically, how its datapath can be constructed

®» Microprocessor itself is ...
» Made of resistors, capacitors, diodes, and transistors

= Billions of them, so understanding their behaviours (what they
do) once they are linked together is too onerous
= So we resort to abstraction (black box) in order to understand
their functioning
= | ogic gates: perform a Boolean function
» Hardware components (i.e., logic gates) have propagation
delay
= Signals (0's and 1's) take fime to propagate through them

Next Lecture

» [mplementation of a microprocessor (CPU) based on an ISA
» Execution of machine instructions (datapath)
- Combinational logic

