THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE’S COMPILING.”

T e N
HEY! GET BACK
TO UORK‘

CMPT 295

Unit - Instruction Set Architecture
Lecture 25 — ISA Design + Evaluation




Last Lecture

» | ooked at an example of a RISC instruction set: MIPS
= From ifs Instruction Set Architecture (ISA):
»Registers
» Memory model

» (Sub)set of instructions

» Assembly instructions Format of assembly instruction not
necessarily == format of machine instruction

=» Machine instructions
» Format of R-format of a MIPS machine instruction

» Size of ifs fields




From last lecturel Example of an ISA: MIPS
| Rogistor name | Numbor _ Usage

$zero 0 constant O
$at 1 reserved for assembler
» Func-l-lon CO” Convenhons $v0 2 express!un eualuatﬁonandresultsufafunm!m
vl 3 expression evaluation and results of a function
: $al 4 argument 1
= caller saved registers sa] 5 |agment2
$al 6 argument 3
1 $a3 7 argument 4
- Cq"ee Saved reQISTerS $t0 8 .lernp-umry (not preserved across call)
$tl 9 temporary (not preserved across call)
$t? 10 temporary (not preserved across call)
£t3 11 temporary (not preserved across call)
$t4 12 temporary (not preserved across call)
$th 13 temporary (not preserved across call)
. tth . 14 . lempaorary (not preserved across call)
[ 2 MOdel Of CompU'I'O'I'lon $t7 15 temporary (not preserved across call)
$s0 16 saved temporary (preserved across call)
. $s1 17 saved temporary (preserved across call)
= Sequential b2 18| saved temporary (preserved across call
$53 19 saved temporary (preserved across call)
$54 20 saved temporary (preserved across call)
$s5 21 saved temporary (preserved across call)
tsh 22 saved temporary (preserved across call)
$s7 23 saved temporary (preserved across call)
$itB 24 temporary (not preserved across call)
$t9 25 temporary (not preserved across call)
$kO 26 reserved for OS kermnel
$kl 27 reserved for 05 kerne
$ap 28 pointer to global area
3 $sp 29 stack pointer
$fp 30 frame pointer
$ra 31 return address (used by function call)




From last lecturel

MIPS - Design guidelines

3. In terms of machine instruction format: %[ Why? ]
a. Create as few of them as possible

L. Have them all of the same length and same format!

c. If we have different machine instruction formats, then position the fields that
have the same purpose in the same location in the format

=» Can all MIPS machine instructions have the same length and same format?
»For example: 1w $s1, 20($s2)=> | opcode | rs | rt | =d func | ¢

= When designing its corresponding machine instruction ...

= Must specify source register using 5 bits -> OKI

» Must specify destination register using 5 bits -> OK!

= Must specify a constant using 5 bits -> Hum...
» Value of constant limited to [0..2°-1]

4 » Offen use to access array elements
so needs to be > 2° =32

‘




From last lecture! . .
MIPS ISA designers compromise

» Keep all machine instructions format the same length
» Conseqguence -> different formats for different kinds of MIPS

instructions
. opcode rs rt rd func
= R-format for register 6 bits |5 bits|5 bits|5 bits 6 bits
» |-format for immediate opcode rs rt
. 6 bits |5 bits|5 bits

» J-format for jump

opcode

6 bits

® opcode indicates the instruction as well as the format of the
instruction

= This way, the hardware knows whether to treat the last half of the
instruction as 3 fields (R-format) or as 1 field (I-format)

| from C. » Since we have different machine instruction formats, fields with
Nn previous slide ?qme PUépose are positioned in the same location in the 3
5 \ ormarts




Today's Menu

» Create our own instruction sets
» |SA evaluation




Let’s design our own ISA - x295M (1 of 2)

®» Registers and Memory model

» # of registers -> 0 registers — model called “"Memory Only” (except $sp)

» Fach memory address has -> 32 bits (m = 32)

» Word size -> 32 bifs

o o -
» Byte-addressable memory ey T ek
so address resolution -> n =1 byte (8 bits) * toncompressed * compressed
el of wewd of
Memongt. ey

» Memory size -> 2M x n -> 232 x | pyte
OR 232 x 8 bits



Let’s design our own ISA - x295M (2 of 2)

» (Sub)set of instructions

x295M assembly language Semantic Corresponding x295M machine
instructions (i.e., Meaning) instructions

ADD a, b, c M[c] =M[a] +M[b] 01 <30 bits> 00 <30 bits> 00 <30 bits>
SUB a, b, c M[c] =M[a] - M[b] 10 <30 bits> 00 <30 bits> 00 <30 bits>
MUL a, b, c M[c] =M[a] *M[b] 11 <30 bits> 00 <30 bits> 00 <30 bits>

=» Memory addressing mode -> Direct (absolute), base + displacement and indirect

» Operand model -> "3 Operand” model
= Format of corresponding x295M machine instructions:

0] memory address of 00 memory address of 00 memory address of
dest srcl Src?
_ﬁ
word 1 word 2 word 3

» Size of opcode -> 2 bits  Size of operand -> 30 bits
» | ength of 1 instruction -> bits




Note about the machine code format

About Design guideline
. . 3. In terms of machine
» ThIS |SA hOS TWO mCIChlﬂe COde insirucﬁon formqf:

formafts: a. Create as few of them as
possible -> 2 formats
b. Have them all of the

Format 1: opcode memory address same length -> 32 bits
c.Since we have two
Format 2: memory address different machine
instruction formats, fields

with same purpose are
C———————————————————— positioned in the same
word location in the 2 formats
-> operand field
(purpose -> memory
address) positioned in
9 the same location in
the 2 formats




Evaluation of our ISA x295M versus MIPS

» Sample Ccode: z = (x + yv) * (x - V)
C code -> Assembly code Meaning
/
ADD 0($sp), 4($sp), 12 ($sp) M[Ssp+12] =M[$sp+0] + M[Ssp+4]

SUB 0($sp), 4(Ssp), 16($sp) M[$sp+16] =M[Ssp+0] —M[$Ssp+4]
MUL 12($sp), 16($sp), 8(S$Ssp) M[$sp+8] =M[$sp+12] *M[$sp+16]




Evaluation of our ISA x295M versus MIPS

» Sample Ccode: z = (x + vy) * (x - V)

Stack Segment Text Segment

Memory ADD 0]
SUB 10
Ox7£££££00<- Ssp-> MUL 11
0x00400000 -> No op 00
Assembly code Memory address of | | Machine code
each insfruction
0x00400000 0x00400004 0x00400008
ADD 0($sp), 4(Ssp), 12($sp)-> 01 Ox7£f£££ff0c 00 Ox7£f££££f00 00 Ox7ff£f£ff04
\\/ 0x0040000c 0x00400010 0x00400014
SUB 0($sp), 4($sp), 16($sp)-> 10 Ox7£££££10 00 Ox7£££££00 00 Ox7£££££04
\I\ 0x00400018 0x0040001c 0x00400020

11 MUL 12(Ssp), 16(Ssp), 8(S$sp)-> 11 Ox7££f£££f08 00 Ox7£f£££ff0c 00 Ox7£££££10
\\




Evaluation of our ISA x295M versus MIPS

» Sample Ccode: z = (x + y)

C code -> Assembly code

lw $sl, 0(Ssp)
lw $s2, 4(S$Ssp)
add $s3, $s1, $s2
sub $s4, $s1, $s2
mul $s5, $s3, $s4
sw $s5, 8(S$Ssp)

*(x - y)
Meaning
$Ssl = M[S$sp + O]
$s2 = M[S$Ssp + 4]
Ss3 = $s1 + §$s2
Ss4 = $sl1 - S$s2
$s5 = $s3 * $s4

M[Ssp + 8] = $s5



Evaluation of our ISA x295M versus MIPS

1w
SW
add

sub

$52
Ss3
Ss4
$s5
$sp

13

35,
43,

0+ 32,
0 + 34,
0 + 36y,

m

1710
180
190
20,
214,
2910

» Sample C code: =z (x + y) * (x - vy)
l-format src  dest

opcode rs rt

6 bits |5 bits|5 bits

Assembly code Machine code

lw Ssl,
lw $s2,

0(S$sp)-> 100011 11101 10001 0x0000
4 ($sp)-> 100011 11101 10010 0x0004
sw $s5, 8($sp)->101011 10101 11101 0x0008
R-format

srci

src2

dest

opcode
6 bits

5

rs
bits

rt
5 bits

rd
5 bits

func
© bits

Assembly code

add $s3, $sl,

sub $s4,

$s1,

$s2-> 000000 10001 10010 10011 00000 100000
$s2-> 000000 10001 10010 10100 00000 100010
mul $s5, $s3, $s4-> 000000 10011 10100 10101 00000 100100

Machine code



Memory address of

each instruction » ScmpIeCcode: Zz = (x + y) *
x00400000 01 11 1111 1111 1111 1111 1111 0000
x00400004 00 171 1111 1111 1111 1111 1111 0000
x00400008 00 11 1111 1111 1111 1111 1111 0000
x0040000c 10 11 1111 1111 1111 1111 1111 0001
0x00400010 00 11 1111 1111 1111 1111 1111 0000
0x00400014 00 11 1111 1111 1111 1111 1111 0000
0x00400018 11 1111 1111 1111 1111 1111 0000
0x0040001 11 1111 1111 1111 1111 1111 0000
00 11 1111 1111 1111 1111 1111 0001

Memory address of

each instruction
Ox00400000 100011 11101
MIPS 0x00400004100011 11101
_ _ 0x00400008 000000 10001
in machine code (,,040000c 000000 10001
0x00400010 000000 10011
0x00400014 101011 10101

10001
10010
10010
10010
10100
11101

Evaluation of our ISA x295M versus MIPS

x295M

in machine code

0000 0000 0000 0000
0000 0000 0000 0100
10011 00000 100000
10100 00000 100010
10101 00000 100100
0000 0000 0000 0008



Which criteria shall we use when
comparing/evaluating ISAs<e

» Whether or not the Instruction set (IS) design guidelines
have been satisfied:

1. Each instruction of IS have an unambiguous binary encoding
2. IS is functionally complete -> i.e., it is “Turing complete”

3. In terms of machine instruction format:
a. Create as few of them as possible
L. Have them all of the same length

c. If we have different machine instruction formats, then position
the fields that have the same purpose in the same location in
the format




Which criteria shall we use when
comparing/evaluating ISAs<e

= Program performance -> usually measured using fime

= |[f an ISA design results in faster program execution then it is
deemed "better”

» What can affect the fime a program takes to execute?

» Since accessing memory is slow (slower than accessing
registers), the number of memory accesses a program does
will affect its execution time

» Therefore, possible criteria: number of memory accesses

» The fewer memory accesses our program makes, the faster it
executes, hence the “beftter” it is



Why Is memory access slow!

= Memory access is the most time constraining aspect of
program execution

» Why?e Because of transfer rate limitation of the bus between
memory and CPU

= Memory is “far away” from the CPU so it takes time to transfer
instructions and data from memory to microprocessor

= This is known as the von Neumann bottleneck

CPU Memory

Address Bus

Registers >
Data Bus

< >

Coreiten PC Instruction

Codes <
Bus
17 = From the above diagram, we can gather that register

access is faster than memory access! Whye




How Is The von Neumann Boltleneck created?

» |t is created when memory is accessed
= During fetch stage

® An instruction is refrieved from memory
= During decode/execute stages

®» The value of operands may be read from memory
» The result may be written to memory




Evaluation of our ISA x295M versus MIPS

» SampleCcode: z = (x + y) * (x - V)
®» | etf’'s count the number of memory accesses:
decode/ decode/
fetch execute fetch
2 B@M etc MIPS execute
ADD 0(Ssp), 4(Ssp), 12($sp) lw $sl1l, 0($sp)
\ /
SUB 0($sp), 4($sp), 16($sp) lw $s2, 4(3sp)
A / add $s3, $s1, $s2

MUL 12 , 16 , 8
($sp) ($sp) (Ssp) sub $s4, $s1, $s2

mul $s5, $s3, $s4
sw $s5, 8($sp)

Total:




Summary

= [SA design
» MIPS

» Created our own x295M: “Memory only”

= |SA Evaluation

= Examining the effect of the von Neumann bottleneck on the
execution fime of our program by counting number of
memory accesses

»The fewer memory accesses our program makes, the faster it
executes, hence the “better” it is

®» |[mprovements:

20 = Decreasing effect of von Neumann bottleneck by reducing
the number of memory accesses




Next Lecture

» Implementation of a microprocessor (CPU) based on an ISA
» Execution of machine instructions (datapath)
= |ntro to logic design




