
1

CMPT 295
Unit - Instruction Set Architecture

Lecture 25 – ISA Design + Evaluation

https://imgs.xkcd.com/comics/compiling.png

Carnegie Mellon

Last Lecture

 Looked at an example of a RISC instruction set: MIPS

From its Instruction Set Architecture (ISA):

Registers

Memory model

(Sub)set of instructions

Assembly instructions

Machine instructions

Format of R-format of a MIPS machine instruction

Size of its fields

2

Format of assembly instruction not

necessarily == format of machine instruction

 Function call conventions

 caller saved registers

 callee saved registers

Model of Computation

Sequential

3

Example of an ISA: MIPSFrom last lecture!

MIPS - Design guidelines

3. In terms of machine instruction format:

a. Create as few of them as possible

b. Have them all of the same length and same format!

c. If we have different machine instruction formats, then position the fields that
have the same purpose in the same location in the format

 Can all MIPS machine instructions have the same length and same format?

For example: lw $s1, 20($s2)=>

When designing its corresponding machine instruction …

Must specify source register using 5 bits -> OK!

Must specify destination register using 5 bits -> OK!

Must specify a constant using 5 bits -> Hum…

Value of constant limited to [0..25-1]

Often use to access array elements
so needs to be > 25 = 32

4

Why?

From last lecture!

?

MIPS ISA designers compromise

 Keep all machine instructions format the same length

 Consequence -> different formats for different kinds of MIPS
instructions

 R-format for register

 I-format for immediate

 J-format for jump

 opcode indicates the instruction as well as the format of the
instruction

 This way, the hardware knows whether to treat the last half of the
instruction as 3 fields (R-format) or as 1 field (I-format)

 Since we have different machine instruction formats, fields with
same purpose are positioned in the same location in the 3
formats 5

opcode

6 bits

rs

5 bits

rt

5 bits

rd

5 bits

shamt

5 bits

func

6 bits

Address/immediate

16 bits

opcode

6 bits

rs

5 bits

rt

5 bits

Target address

26 bits

opcode

6 bits

From last lecture!

from c.
on previous slide

 Instruction Set Architecture (ISA)

 Definition of ISA

 Instruction Set design

 Design guidelines

 Example of an instruction set: MIPS

Create our own instruction sets

 ISA evaluation

 Implementation of a microprocessor (CPU) based on an ISA

 Execution of machine instructions (datapath)

 Intro to logic design + Combinational logic + Sequential logic circuit

 Sequential execution of machine instructions

 Pipelined execution of machine instructions + Hazards

Today’s Menu

6

 Registers and Memory model

# of registers -> 0 registers – model called “Memory Only” (except $sp)

Each memory address has -> 32 bits (m = 32)

Word size -> 32 bits

Byte-addressable memory

so address resolution -> n = 1 byte (8 bits)

Memory size -> 2m x n -> 232 × 1 byte

OR 232 × 8 bits
7

Let’s design our own ISA - x295M (1 of 2)

 (Sub)set of instructions

Memory addressing mode -> Direct (absolute), base + displacement and indirect

Operand model -> “3 Operand” model

 Format of corresponding x295M machine instructions:

 Size of opcode -> 2 bits Size of operand -> 30 bits

 Length of 1 instruction -> ___________ bits
8

Let’s design our own ISA - x295M (2 of 2)

x295M assembly language

instructions

Semantic

(i.e., Meaning)

Corresponding x295M machine

instructions

ADD a, b, c M[c] = M[a] + M[b] 01 <30 bits> 00 <30 bits> 00 <30 bits>

SUB a, b, c M[c] = M[a] - M[b] 10 <30 bits> 00 <30 bits> 00 <30 bits>

MUL a, b, c M[c] = M[a] * M[b] 11 <30 bits> 00 <30 bits> 00 <30 bits>

memory address of

dest
01 00 00

memory address of

src1
memory address of

src2

word 1 word 2 word 3

Note about the machine code format

 This ISA has two machine code

formats:

9

memory addressopcode

memory address

word

About Design guideline

3. In terms of machine

instruction format:
a. Create as few of them as

possible -> 2 formats

b. Have them all of the

same length -> 32 bits

c. Since we have two

different machine

instruction formats, fields

with same purpose are

positioned in the same

location in the 2 formats

-> operand field

(purpose -> memory

address) positioned in

the same location in

the 2 formats

Format 1:

Format 2:

Evaluation of our ISA x295M versus MIPS

 Sample C code: z = (x + y) * (x - y)

10

M[$sp+12] = M[$sp+0] + M[$sp+4]

MeaningC code -> Assembly code

ADD 0($sp), 4($sp), 12($sp)

SUB 0($sp), 4($sp), 16($sp)

MUL 12($sp), 16($sp), 8($sp)

M[$sp+16] = M[$sp+0] – M[$sp+4]

M[$sp+8] = M[$sp+12] * M[$sp+16]

Evaluation of our ISA x295M versus MIPS

 Sample C code: z = (x + y) * (x - y)

11

Assembly code

ADD 0($sp), 4($sp), 12($sp)->

SUB 0($sp), 4($sp), 16($sp)->

MUL 12($sp), 16($sp), 8($sp)->

Machine code

Opcode Encoding

ADD 01

SUB 10

MUL 11

No op 00

Memory address of

each instruction

0x00400000 0x00400004 0x00400008

01 0x7fffff0c 00 0x7fffff00 00 0x7fffff04

0x0040000c 0x00400010 0x00400014
10 0x7fffff10 00 0x7fffff00 00 0x7fffff04

11 0x7fffff08 00 0x7fffff0c 00 0x7fffff10
0x00400018 0x0040001c 0x00400020

$sp->

Stack Segment Text Segment

Memory

0x00400000 ->

0x7fffff00<-

Evaluation of our ISA x295M versus MIPS

 Sample C code: z = (x + y) * (x - y)

12

lw $s1, 0($sp)

lw $s2, 4($sp)

add $s3, $s1, $s2

sub $s4, $s1, $s2

mul $s5, $s3, $s4

sw $s5, 8($sp)

$s3 = $s1 + $s2

$s4 = $s1 - $s2

$s5 = $s3 * $s4

$s1 = M[$sp + 0]

$s2 = M[$sp + 4]

M[$sp + 8] = $s5

MeaningC code -> Assembly code

Evaluation of our ISA x295M versus MIPS

 Sample C code: z = (x + y) * (x - y)

13

lw $s1, 0($sp)-> 100011 11101 10001 0x0000

lw $s2, 4($sp)-> 100011 11101 10010 0x0004

add $s3, $s1, $s2-> 000000 10001 10010 10011 00000 100000

sub $s4, $s1, $s2-> 000000 10001 10010 10100 00000 100010

mul $s5, $s3, $s4-> 000000 10011 10100 10101 00000 100100

sw $s5, 8($sp)-> 101011 10101 11101 0x0008

opcode

6 bits

rs

5 bits

rt

5 bits

rd

5 bits

shamt

5 bits

func

6 bits

Address/immediate

16 bits

opcode

6 bits

rs

5 bits

rt

5 bits

I-format

R-format

Opcode

+ func

Encoding

lw 3510

sw 4310

add 0 + 3210

sub 0 + 3410

mul 0 + 3610

Register Number

$s1 1710

$s2 1810

$s3 1910

$s4 2010

$s5 2110

$sp 2910

src dest

src1 src2 dest

Assembly code Machine code

Assembly code Machine code

Evaluation of our ISA x295M versus MIPS
 Sample C code: z = (x + y) * (x - y)

100011 11101 10001 0000 0000 0000 0000

100011 11101 10010 0000 0000 0000 0100

000000 10001 10010 10011 00000 100000

000000 10001 10010 10100 00000 100010

000000 10011 10100 10101 00000 100100

101011 10101 11101 0000 0000 0000 0008

0x00400000

0x00400004

0x00400008

0x0040000c

0x00400010
0x00400014

0x00400000 01 11 1111 1111 1111 1111 1111 0000 1100

00 11 1111 1111 1111 1111 1111 0000 0000

00 11 1111 1111 1111 1111 1111 0000 0100

0x0040000c

0x00400010

0x00400014

10 11 1111 1111 1111 1111 1111 0001 0000

00 11 1111 1111 1111 1111 1111 0000 0000

00 11 1111 1111 1111 1111 1111 0000 0100

0x00400018

0x0040001c

0x00400020

0x00400004

0x00400008

11 11 1111 1111 1111 1111 1111 0000 1000

00 11 1111 1111 1111 1111 1111 0000 1100

00 11 1111 1111 1111 1111 1111 0001 0000

x295M
in machine code

MIPS

in machine code

14

Memory address of

each instruction

Memory address of

each instruction

Which criteria shall we use when

comparing/evaluating ISAs?

Whether or not the Instruction set (IS) design guidelines

have been satisfied:

1. Each instruction of IS have an unambiguous binary encoding

2. IS is functionally complete -> i.e., it is “Turing complete”

3. In terms of machine instruction format:

a. Create as few of them as possible

b. Have them all of the same length

c. If we have different machine instruction formats, then position
the fields that have the same purpose in the same location in

the format

15

Which criteria shall we use when

comparing/evaluating ISAs?

 Program performance -> usually measured using time

 If an ISA design results in faster program execution then it is

deemed “better”

What can affect the time a program takes to execute?

Since accessing memory is slow (slower than accessing

registers), the number of memory accesses a program does

will affect its execution time

 Therefore, possible criteria: number of memory accesses

 The fewer memory accesses our program makes, the faster it

executes, hence the “better” it is
16

Memory access is the most time constraining aspect of

program execution

Why? Because of transfer rate limitation of the bus between

memory and CPU

Memory is “far away” from the CPU so it takes time to transfer

instructions and data from memory to microprocessor

 This is known as the von Neumann bottleneck
CPU Memory

Address Bus

Data Bus

Instruction
Bus

Condition
Codes

Registers

PC

17

Why is memory access slow!

 From the above diagram, we can gather that register

access is faster than memory access! Why?

How is the von Neumann Bottleneck created?

 It is created when memory is accessed

 During fetch stage

 An instruction is retrieved from memory

 During decode/execute stages

 The value of operands may be read from memory

 The result may be written to memory

18

Evaluation of our ISA x295M versus MIPS

 Sample C code: z = (x + y) * (x - y)

 Let’s count the number of memory accesses:

fetch

decode/

execute

19

lw $s1, 0($sp)

lw $s2, 4($sp)

add $s3, $s1, $s2

sub $s4, $s1, $s2

mul $s5, $s3, $s4

sw $s5, 8($sp)

fetch
decode/

execute

Total:

ADD 0($sp), 4($sp), 12($sp)

SUB 0($sp), 4($sp), 16($sp)

MUL 12($sp), 16($sp), 8($sp)

x295M MIPS

Carnegie Mellon

Summary

 ISA design

MIPS

Created our own x295M: “Memory only”

 ISA Evaluation

Examining the effect of the von Neumann bottleneck on the

execution time of our program by counting number of

memory accesses

The fewer memory accesses our program makes, the faster it
executes, hence the “better” it is

 Improvements:

Decreasing effect of von Neumann bottleneck by reducing

the number of memory accesses
20

21

 Instruction Set Architecture (ISA)

 Definition of ISA

 Instruction Set design

 Design principles

 Look at an example of an instruction set: MIPS

 Create our own

 ISA evaluation

 Implementation of a microprocessor (CPU) based on an ISA

 Execution of machine instructions (datapath)

 Intro to logic design + Combinational logic + Sequential logic circuit

 Sequential execution of machine instructions

 Pipelined execution of machine instructions + Hazards

Next Lecture

