| do not like computer jokes ...
not one bif!

CMPT 295

Unit - Instruction Set Architecture
Lecture 24 — MIPS

Last Lecture

» Assembler (part of the compilation process):

» Transforms assembly code (movl %edi, %eax)into machine code
(0x£889 -> 1111100010001001)

... Is an abstract model of a computer.

» |nsfruction Set Architecture (|SA) ... is an interface between software (and s/w developers)

and hardware (hardware designers).

A formal specification (or agreement) of ...

A realization of an ISA is . main memor . . .
called an implemenpfation. » Registers and memory madel, set of instructions (assembly-machine)

An ISA permits . .
mplomentationd, = Conventions, model of computation o e

»ctfC...

= Design principles when creating instruction set (IS)
1. Each instruction must have an unambiguous encoding
2. Functionally complete (Turing complete)

3. Machine instruction format: 1) as few of them as possible 2) of the
same length 3) fields that have the same purpose positioned in the
same location in the format

= Types of instruction sets: CISC and RISC

... is an abstract model of a computer.
... is an interface between software (and s/w developers)
 and hardware (hardware designers).

A realization of an ISA is called an implementation.
An ISA permits multiple implementations.

data types, memory addressing modes

main memory

Today's Menu

» Example of an instruction set: MIPS

m\c’copk"ocessox
wWitRouX intexlocked

Example of another ISA: MIPS 9;‘;2?

Example of an ISA: MIPS

/
» Registers and Memory model

1w #of reqisters -> 32 reqisters (each reqister is 32 bit wide) See Figure on next Slide

3 » Word size -> 32 bits

5 » Memory size ->2Mxn = 2_,32 . Bbﬂ—s P
4 = Byte-addressable memory i 2} - .
so address resolution ->1n = & bils ! .
——— i i =
. . O de-g 3&'0\'{5
2 = Size of memory address (# of bits) > 39 Wiz * tncompressed * compoesand
- M\ =37 views of Wew of
G » So, there are 2 distinct addressable memory “chunks” & -

(or “locations”) and each of these addressable memory
5 “chunks” (or “locations”) has_8 bits see Figure on next next Slide

Uesge

$zero 0 constant 0
fat 1 reserved for assembler
$vl 2 expression evaluation and results of a function
$vl 3 expression evaluation and results of a function
$al 4 argument 1
$al 5 argument 2
$a? 6 argument 3
$al 7 argument 4
$t0 8 temporary (not preserved across call)
$tl 9 temporary (not preserved across call)
$t? 10 temporary (not preserved across call)
$t3 11 temporary (not preserved across call)
$td 12 temporary (not preserved across call)
$th 13 temporary (not preserved across call)
$th 14 temporary (not preserved across call)
$t7 15 temporary (nol preserved across call)
$s0 16 saved temporary (preserved across call)
$s1 17 saved temporary (preserved across call)
$57 18 saved temporary (preserved across call)
$s53 19 saved temporary (preserved across call)
$s4 20 saved temporary (preserved across call)
$55 21 saved temporary (preserved across call)
$sh 22 saved temporary (preserved across call)
§s7 23 saved temporary (preserved across call)
$t8 24 temporary (not preserved across call)
$to 25 temporary {not preserved across call)
$kO 26 reserved for 05 kermne
tkl 27 reserved for 0S5 kernel
$ap 28 pointer to global area
$sp 29 stack pointer
$fp 30 frame pointer
fra 31 return address (used by function call)

6 FIGURE A.6.1 MIPS registers and usage convention.

Source: Page A-24 in Patterson and Hennessy

MIPS Memory Model

$sp— TFff Fffcpey

Dynamic data &——— hea_P
$gp— 1000 8000;,, Static data
1000 0000,

Text

pc—= 0040 00000y
0

Reserved

FIGURE 2.13 The MIPS memory allocation for program and data. These addresses are only
a soflware conventlion, and nol parl of the MIPS archilecture. ‘Lhe stack pointer is initialized to /£
fffc, and grows down toward the dala segment. At the other end, the program code (“lext”) starls at
0040 0000, The static data starts at 1000 0000,__. Dynamic data, allocated by ma | 1 o¢ in C and by
new in Java, is next. It grows up toward the stack in an area called the heap. The global pointer, $gp, is set to
an address to make it easy to access data. It is initialized to 1000 8000, so that it can access from 1000
0000, to 1000 fTff_ using the positive and negative 16-bit offsets from $gp. This information is also
found in Column 4 of the MIPS Relerence Dala Card at the front of this book.

Example of an ISA: MIPS

» |nsfruction seft

= MIPS ossembj/y language notation
g add a, b, ¢ Meaning.a=b+c

» 3 operand assembly language

= Requiring all instructions to have 3 operands would
keep the design of the microprocessor hardware
simple

» Hardware for a variable number of operands is
more complicated

ACTIVIty

» |f we want to write an assembly program that sums
four variables b, ¢, d and e, how many MIPS add

instructions would we need? bre+d+e

» Solution: adda, b, c #a=b+c
b+ Make. oux covnww_yﬂ's
add a, a, d #a:,a9+d Sg

Feortatmed” as
add a, a, e #a=b+c+d+e Possdo\e.)

veadey does not have
9 “o vefex Era.ch-a“foo'mzr

Commards 1o —Z

add a, b, c

add a, a, d

add a, a, e

a = b + c

a = a + d

a = b + c + d + e

wndexnstaind

. cwvamt Comment |
Example of an ISA: MIPS ¥ comment,
] » (Sub)set of instructions
MIPS assembly language Semantic (i.e., Meaning) Corresponding MIPS
instructions machine instructions
lw $s51, 20($s2) @ $s1 = M[$s2 + 20] Tc+4 done as 2
sw Ssl, 20($s2) M[$s2 + 20] = $sl F%?I’Ehc‘: l"-3‘:’1:3 2
- dececke - axeancte
add $sl1, $s2, $s3 Ssl = $s2 + $s3 L PC+ 4 2
sub $s1, $s2, $s3 $sl = $s2 - $s3 i 2
beq $sl1, $s2, 25 if ($sl == $s2) go to PC + 4 + 100 2
I 2500 go to 10000 (2500 * 4 bytes) 2
jal 2500 Sra = PC + 4; go to 10000 2
» Memory addressing modes -> Direct (absolute), t
base + displacement and Indirect Format/syntax of

these bit patternse
» Operand model -> ¥

= Format/syntax of corresponding MIPS machine instructions?
» | ength of machine instruction -> 32 bits (4 bytes)
w» Size of opcode? Size of other fieldse Order of operands?

Corresponding
machine
instruction

/

Format of
corresponding
machine
instruction

"\

A closer look at MIPS' add instruction

= MIPS assembly language instruction:
add S$s0, Sal, St7

-> 0000 0000 10QA0 1111 1000)0000 0010 0000
-> 000000 00000 100000

-> opcode shamt func

MIPS machine instruction - fields

Format of

R-type MIPS opcode| rs rt rd func
instructions

® opcode: operation of the instruction

» rs: first register source operand 55?
® rt:second register source operand 73
» rd: register destination operand (contains TS
results of operation > reed 3 bifls o iliqpely iden-
- : P on) Hﬁﬁ 3’2?‘15@%"\3'\'2.\45 |
- : shift amount » 5 bits
» func: function — often called function » 4 bits
code, which indicates the specific variant Total: 32 bits
of the operation in the opcode field '

Let’'s examine an ISA: MIPS (3 of 3)
| Number | Usage |

$zero 0 constant O
$at 1 reserved for assembler
1 1 $v0 2 expression evaluation and results of a function
- FUHCTIOH CO” Convenhons vl 3 expression evaluation and results of a function
: $al 4 argument 1
= caller saved registers sa] 5 |agment2
$al 6 argument 3
1 $a3 7 argument 4
- Cq"ee Saved reQISTerS $t0 8 .lernp-umry (not preserved across call)
$tl 9 temporary (not preserved across call)
$t? 10 temporary (not preserved across call)
£t3 11 temporary (not preserved across call)
$t4 12 temporary (not preserved across call)
$th 13 temporary (not preserved across call)
tth . 14 . lempaorary (not preserved across call)
$t7 15 temporary (not preserved across call)
$s0 16 saved temporary (preserved across call)
$s1 17 saved temporary (preserved across call)
$s52 18 saved temporary (preserved across call)
$53 19 saved temporary (preserved across call)
$54 20 saved temporary (preserved across call)
$s5 21 saved temporary (preserved across call)
$<h 22 saved temporary (preserved across call)
$s7 23 saved temporary (preserved across call)
$itB 24 temporary (not preserved across call)
$t9 25 temporary (not preserved across call)
$kO 26 reserved for 05 kerne
$kl 27 reserved for 05 kerne
$ap 28 pointer to global area
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 return address (used by function call)

MIPS - Design guidelines

3. Interms of machine instruction format: %[Why?2]
a. Create as few of them as possible

L. Have them all of the same length and same format!

c. If we havedrrdifferent machine instruction formats, then position the
fields that have the same purpose in the same location in the format

= Can all MIPS machine instructions have the same length and same

format?
= For example: 1w $s1, 20 ($s2) opcode rs v rd func

= When designing its corresponding machine instruction ...
= Must specify source register using S bits -> OK!
= Must specify destination register using 5 bits -> OKI
= Must specify a constant using 5 bits -> Hum...
» Value of constant limited to [0..2°-1]

» Often use to access array elements
so needs to be > 2°=32

‘

MIPS ISA designers compromise

» Keep all machine instructions format the same length
» Consequence -> different formats for different kinds of MIPS

instructions
opcode rs rt rd func
» R-format for regisfer 6 bits |5 bits|5 bits|b bits 6 bits
. . opcode rs rt
= |-formaf for immediate 6 bits |5 bits|s bits
» J-format for jump opcode
6 bits

® opcode indicates the format of the instruction

= This way, the hardware knows whether to treat the last half of the
instruction as 3 fields (R-format) or as 1 field (I-format)

» Also, position of fields with same purpose are in the same location

in the 3 formats ©

Summary

» Types of instruction sets: CISC and RISC

» | ooked at an example of a RISC instruction set: MIPS
®» Registers and Memory model
» (Sub)set of instructions (assembly + machine instructions)
» Function call conventions
» Model of computation

= MIPS design principles
1. Unambiguous binary encoding of instruction
2. IS functionally complete (“Turing complete”)

3. Machine instruction format -> only 3 of same length but of different format!
» R-format for register

» |-formart for immmediate
= J-format for jump

= Also, position of fields with same purpose are in the same location in the 3
formats ©

Next lecture

» Create our own instruction sets
» |SA evaluation

