
1

CMPT 295
Unit - Instruction Set Architecture

Lecture 23 – Introduction to Instruction Set Architecture (ISA)

+ ISA Design + MIPS

Last Lecture - 1

 What is a buffer overflow

 When function writes more data in array than array can hold on stack

 Effect: data kept on the stack (value of other local variables and registers,
return address) may be corrupted

-> Stack smashing

 Why buffer overflow spells trouble -> it creates vulnerability

 Allowing hacker attacks

 How to protect system against such attacks

1. Avoid creating overflow vulnerabilities in the code that we write

By always checking bounds and calling “safe” library functions that
consider size of array

2. Employ system-level protections

Randomized initial stack pointer and non-executable code segments

3. Use compiler (like gcc) security features:

 Stack “canary” value and endbr64 instruction

s/w developer

system

compiler
2

Last Lecture - 2

 Floating point data and operations

Data held and manipulated in XMM registers

Assembly language instructions similar to integer assembly

language instructions we have seen so far

Optional: Storing Data in Various Segments of Memory

Global variables => data segment

Local variables => stack segment

How their values are represented in an assembly program

Brief look at …

3

 Instruction Set Architecture (ISA)

 Definition of ISA

 Instruction Set design

 Design guidelines

 Example of an instruction set: MIPS

Create our own instruction sets

 ISA evaluation

 Implementation of a microprocessor (CPU) based on an ISA

 Execution of machine instructions (datapath)

 Intro to logic design + Combinational logic + Sequential logic circuit

 Sequential execution of machine instructions

 Pipelined execution of machine instructions + Hazards

Today’s Menu

4

Reference

Computer Organization and Design, 5th Edition,

by David A. Patterson and John L. Hennessy

See Resources for a link to an online version

Chapter 2 – Instructions: Language of the Computer

Chapter 4 – The processor

Chapter 4 of our textbook ?

5

The Big Picture – Above the hood

sum_store.c

Preprocessed Source

Example of C C Preprocessor

C Compiler
sum_store.i

Assemblersum_store.s

Linker

Executable
ss

Loader
sum_store.o

An agreement establishing
how software communicates
with CPU.

1111100010001001

111111111000010101100110

0000001001111110

1100001111110011

1101100011110111

1111101011101011

C code

Assembly code

Machine code

6

The Big Picture - Under the hood!

1111100010001001

111111111000010101100110

0000001001111110

1100001111110011

1101100011110111

1111101011101011

Machine code

Microprocessor datapath

Wikipedia says:

A datapath is a collection

of functional units

such as

• ALU (perform data

processing operations),

• registers, and

• buses (allow data

to flow between them).

Along with the control

unit, the datapath

composes the

central processing unit

(CPU/microprocessor).

7

Instruction Set Architecture (ISA)

 Instruction set architecture (ISA): defines the machine

code (i.e., instruction set) that a microprocessor reads

and acts upon as well as the memory model.

Adapted from https://en.wikipedia.org/wiki/Computer_architecture#History

 Instruction Set: it is all the commands understood by a

given computer architecture.

Source: Computer Organization and Design, 5th Edition, by David A.

Patterson and John L. Hennessy

We say that a microprocessor implements an ISA.

8

Instruction Set Architecture (ISA)

An ISA is a formal specification of …

Memory and Registers

 Instruction Set

 Format

 Syntax

 Description (semantic)

Operand model: number, order and meaning of operands

Memory addressing modes

Memory

Word size

Memory size -> 2m x n

 2m distinct addressable locations in memory

 each of these addressable locations has n bits

 Registers
Number

Size

Data type

Purpose

of assembly instructions

and their corresponding

machine instructions

9

Instruction Set Architecture (ISA) cont’d

An ISA is a formal specification of … (cont’d)

Conventions

 How control flow and data are passed during function calls

 How registers are preserved during function calls

Any callee and caller saved registers?

Model of computation

Microprocessor executes our C program in such a way that it

produces the expected result

We get the illusion that the microprocessor executes each C

statement sequentially

10

Examples of word-addressable ISAs:
ISAs:

232
232

232 -1 232 -1

232 -1
(i.e., 4294967295)4294967232

11

Example of an ISA: x86

 Memory model

 Word size: 64 bits

 Memory size -> 2m x n
m = 64 bits even though only 48 bits are used

n = 8 bits (byte-addressable)

 Registers

 16 integers registers of 64 bits (8/16/32/64 bits can be accessed)

Purpose: stack pointer, return value, callee-saved, caller-saved,
arguments

 16 floating point registers of 128 bits

 Instruction set

 Lots of them: https://en.wikipedia.org/wiki/X86_instruction_listings

 Operand model: two operands (of different sizes)

 Memory addressing modes: Supports various addressing modes including
immediate (direct), indirect, base+displacement, indexed, and scaled

12

Instruction set (IS) design guidelines

1. Each instruction of IS must have an unambiguous binary
encoding, so CPU can unambiguously decode and
execute it -> let’s assign a unique opcode to each instruction

2. IS is functionally complete -> i.e., it is “Turing complete”

1. Data transfer instructions

2. Data manipulation instructions

3. Program control instructions

3. In terms of machine instruction format:

a. Create as few of them as possible

b. Have them all of the same length and same format!

c. If we have different machine instruction formats, then position the
fields that have the same purpose in the same location in the format

3 classes of

instructions

Memory reference

Arithmetic and logical

Branch and jump

13

1. “Each instruction of IS must have an

unambiguous binary encoding …”

 Symbolic representation of a

machine instruction

 Mnemonics: abbreviation of
operation name

Example: movq, addw , ret

 Labels to represent addresses

Example: call sum
jmp loop

 Advantage: human readable,
i.e., program easier to read and
write than a series of 0’s and 1’s,

 Made easier through the use of
mnemonics and labels

 Each assembly instruction has a

corresponding machine instruction

 Machine instruction expressed as
bit pattern (binary encoding)

–> 0’s and 1’s

Assembly instruction Machine instruction

opcode operand(s)

compiles (more

specifically:

“assembles”) into

unique

bit pattern

representing

each opcode

unique

bit pattern

representing

each operand
Example
of format

of binary

encoding
14

What is an opcode? What is an operand?

Opcode: Operation Code

Opcode: operation that can be executed by the CPU

 Expressed as bit pattern (binary encoding) –> 0’s and 1’s

Operand(s): required by the opcode in order for CPU to

successfully carry out the instruction

 They are also expressed as bit patterns –> 0’s and 1’s

 In the output of the objdump tool (disassembler), we can see

opcodes and operands expressed as hexadecimal values

binary

Example

using
x86-64

000000000000001101001100

1111101101111110

11000011
15

Types of instruction sets

CISC RISC

 Reduced Instruction Set

Computing

 Small # of general purpose

instructions

 smaller machine instruction set

 simpler microprocessor design

 “load/store” architecture

 Examples: SPARC, MIPS, Alpha

AXP, PowerPC

Complex Instruction Set

Computing

 Large # of instructions

including special purpose

instructions

 Usually “register-memory”

architecture

 Examples: VAX, x86, MC68000

16

Summary

 Assembler (part of the compilation process):

 Transforms assembly code (movl %edi, %eax) into machine code
(0xf889 -> 1111100010001001)

 Instruction Set Architecture (ISA)

A formal specification (or agreement) of …

Registers and memory model, set of instructions (assembly-machine)

Conventions, model of computation

etc...

 Design principles when creating instruction set (IS)

1. Each instruction must have an unambiguous encoding

2. Functionally complete (Turing complete)

3. Machine instruction format: 1) as few of them as possible 2) of the
same length 3) fields that have the same purpose positioned in the
same location in the format

 Types of instruction sets: CISC and RISC
17

 Instruction Set Architecture (ISA)

 Definition of ISA

 Instruction Set design

 Design guidelines

 Example of an instruction set: MIPS

Create our own instruction sets

 ISA evaluation

 Implementation of a microprocessor (CPU) based on an ISA

 Execution of machine instructions (datapath)

 Intro to logic design + Combinational logic + Sequential logic circuit

 Sequential execution of machine instructions

 Pipelined execution of machine instructions + Hazards

Next lecture

18

