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CMPT 295
Unit - Machine-Level Programming

Lecture 22 – Buffer Overflow + Floating-point data & operations



Last lecture

Manipulation of 2D arrays – in x86-64

From x86-64’s perspective, a 2D array is a contiguously 

allocated region of R * C * L bytes in memory where

L = sizeof( T ) and T -> data type of elements stored 

in array

2D Array layout in memory: Row-Major ordering

Memory address of each row A[i]:  A + (i * C * L)

Memory address of each element A[i][j]:

A + (i * C * L) + (j * L)

=> A + (i * C + j) * L
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Today’s Menu
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 Introduction

 C program -> assembly code -> machine level code

 Assembly language basics: data, move operation

 Memory addressing modes

 Operation leaq and Arithmetic & logical operations

 Conditional Statement – Condition Code + cmovX

 Loops

 Function call – Stack

 Overview of Function Call 

 Memory Layout and Stack - x86-64 instructions and registers

 Passing control 

 Passing data – Calling Conventions

 Managing local data

 Recursion

 Array

 Buffer Overflow

 Floating-point data & operations
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Buffer Overflow



C and Stack … so far

C does not perform any bound checks on arrays

 Local variables in C programs

Callee and caller saved registers

 Return addresses

 As we saw in Lab 2 and Lab 4, this may lead to trouble
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stored on the stack 



What kind of trouble? 
-> buffer overflow (overrun)
 If function does not perform bound-check when 

writing to a local array …

… then it may write more data that the allocated

space (to array) can hold, hence overflowing the

array -> buffer overflow

 Effect: the function may end up writing over, i.e., 

corrupting, data kept on the stack such as:

 Value of local variables and registers

 Return address

 Stack smashing
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Top

M[]

%rsp

Stack

return address

buf[  ]

Unused stack space

local var

…
Here is a an example of a bound-check:
if input size <= array size

write input into array



Demo the trouble -> buffer overflow
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Why is buffer overflow a problem

 Corrupted data

 Corrupted return address

 Which may lead to segmentation fault

 How?

 Which also makes a system vulnerable to attacks

 How? 
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Code injection attack

 An “attacker” could overflow the 

buffer …

 … by inputting a string that contains byte 

representation of malicious executable 

code (exploit code) instead of legitimate 

characters

 The string is written to array buf on stack 

and overwrites return address A with a 

return address that points to exploit code 

 When func2 executes ret instruction,  it 

pops this erroneous return address onto 
PC (%rip) and jumps to exploit code

 Microprocessor starts executing the 

exploit code at this location
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Top

M[]

%rsp

Stack

return address A

buf[64]

int func2() {

char buf[64]; 

gets(buf); 

...

return ...; 

}

void func1(){

func2();

// C statement

at return

address A

...

}

func1

stack 
frame

func2

stack 
frame

…

…
array of char’s



How to protection against such attack

1. Avoid creating overflow vulnerabilities in the code that we 
write by always checking bounds

 For example, by calling library functions that limit string 
lengths

 “Unsafe” : gets(), strcpy(), strcat(), sprintf(), …

 These functions can generate a byte sequence 
without being given any indication of the size of the 
destination buffer (see next slide)

 “Safe”: fgets()
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From our Lab 4

11



Suggestion from developer.apple.com
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char destination[5];

char * source = “LARGER”;              

https://linux.die.net/man/3/strlcpy

Copies the string pointed 

to by source (including 
the null character) to the 

destination and returns it. 

Copies up to 

sizeof(destination) -> n
characters from the 

string pointed to by 

source to destination. In 
a case where the length 

of source is less than n, 
the remainder of 

destination will be 
padded with null bytes.

In a case where the 

length of source is 

greater than n, the 

destination will contain 
a truncated version of 

source.





Copies up to 

sizeof(destination) - 1

-> n - 1 characters 
from null-terminated

source to destination, 
it then “null” terminates

destination and returns 

the length of source.





How to protection against such attack

2. Employ system-level protections

-> Randomized stack offsets

 At start of program, system allocates 
random amount of space on stack

 Effect: Shifts stack addresses (%rsp) for 
entire program

Shifts the memory address of all the stack 
frames allocated to program’s functions 
when they are called

 Hence, makes it difficult for hackers to 
predict start of each stack frame (hence 
where exploit code may have been 
inserted) since stack is repositioned each 
time program executes
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Top

M[]

%rsp
Stack

%rsp



How to protection against such attack

2. Employ system-level protections

-> Non-executable code segments

 In the old days of x86, memory 

segments marked as either read-only

or writeable (both implied readable)  

=> 2 types of permissions

Could execute anything readable

x86-64 has added an explicit 

executable permission

Stack segment now marked as non-

executable
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Top
%rsp

return address A

exploit

code

padding

Any attempt to execute this code will fail

B

B

M[]
Stack

…
func1

stack 
frame

func2

stack 
frame



How to protection against such attack

3. Compiler (like gcc) uses a stack 

canary value

 History: Starting early 1900’s, 

canaries used in the coal mines to 
detect gas leaks

 Push a randomized canary value 

between an array and return 

address on stack (remember our 

Lab 4)

 Before executing a ret instruction, 

canary value is checked to see if it 
has been corrupted

 If so, failure reported
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main:  # main.c from our Lab 4

endbr64

pushq %rbp

…

subq $64, %rsp

movq %fs:40, %rax

movq %rax, 56(%rsp)

…

leaq 16(%rsp), %rbp

…

movq 56(%rsp), %rax

xorq %fs:40, %rax

jne .L5

addq $64, %rsp

popq %rbp

ret

.L5:

call __stack_chk_fail@PLT



How to protection against such attack

3. Newest version of our gcc compiler 
(version 8 and up) uses Control-Flow 
Enforcement Technology (CET)

 Instruction endbr64 (End Branch 64 bit) 
-> Terminate Indirect Branch in 64 bit

Microprocessor tracks indirect branching 
and ensures that all indirect calls lead to 
(legal) functions starting with endbr64

 If function does -> microprocessor infers 
that function is safe to execute

 If function does not -> microprocessor 
infers that control flow may have been 
manipulated by some exploit code, i.e., 
function is unsafe to execute and aborts!
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…

Source: https://stackoverflow.com/questions/56905811/what-does-the-endbr64-instruction-actually-do

From 

stackoverflow
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Brief overview of 

floating-point data and operations



Background

Once upon a time in the ’90’s …

Use of computer graphics and image processing (multimedia) 

applications were on the rise

Microprocessors (i.e., machine instruction sets) designed to 

support such applications

Idea: speed up microprocessors by executing single 

instruction on multiple data -> SIMD

 Since then, microprocessors and their machine instruction sets 

have evolved …

SSE (Streaming SIMD Extensions)

AVX (Advanced Vector EXtensions) -> textbook
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XMM Registers
 16 in total, each 16-byte wide (128 bits), named: %xmm0, %xmm1, …, %xmm15

 1 single-precision float (32 bits)

 1 double-precision double (64 bits)

 16 single-byte integers

 8 16-bit integers

 4 32-bit integers

 4 single-precision float’s

 2 double-precision double’s

Vector mode

(packed data)

Scalar mode

031
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063

x86-64 registers and instructions seen so far are referred to as integer registers and integer instructions

Now we introduce 

a new set of 

registers for floating 

point numbers:



Scalar versus Vector (SIMD) instructions
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+

%xmm0

%xmm1

addss %xmm0,%xmm1 Scalar Operations: Single Precision

 SIMD Operations: Single Precision

+ + + +

%xmm0

%xmm1

addps %xmm0,%xmm1



Scalar versus Vector (SIMD) instructions
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 Scalar Operations: Double Precision

 SIMD Operations: Double Precision

+

%xmm0

%xmm1

addsd %xmm0,%xmm1

+

%xmm0

%xmm1

addpd %xmm0,%xmm1

+



Data movement instructions

 The instructions we shall look at in this 
lecture are different than the ones 
presented in section 3.11 of our 
textbook – we shall focus on the scalar
version of these instructions

 movss – move single precision 

 Mem (32 bits) <--> %xmm

 movsd – move double precision

 Mem (64 bits) <--> %xmm

 First 2 instructions of program: Memory 
referencing operands (i.e., memory 
addressing mode operands) specified 
in the same way as for the integer mov* 
instructions

 movaps/movapd – move %xmm <--> %xmm

 ap -> aligned packed20

float_mov:

# ---------

# float float_mov(float f1, 

#                 float *src, 

#                 float *dst) {

# float f2 = *src;

# *dst = f1;

# return f2;

# }

# ---------

# f1 in %xmm0, src in %rdi, dst in %rsi

movss (%rdi), %xmm1  # f2 = *src

movss %xmm0, (%rsi)  # *dst = f1

movaps %xmm1, %xmm0   # return value = f2

ret



Function call and register saving 

conventions

 Function call convention

 Integer (and pointer i.e., memory address) arguments passed in 
integer registers

 Floating point values passed in XMM registers

 Argument 1 to argument 8 passed in %xmm0, %xmm1, ..., %xmm7

 Result returned in %xmm0

 Register saving convention

 All XMM registers caller-saved

Can use register %xmm8 ↔ %xmm15 for managing local data
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Data conversion instructions
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int

long

float double

Converting between data types:   (“t” is for “truncate”)



Data manipulation instructions

Arithmetic

 addss/addsd - floating point add

 subss/subsd - … subtract

 mulss/mulsd - … mul

 divss/divsd - … div

Logical

 andps/andpd

 orps/d

 xorps/d

 xorpd %xmm0, %xmm0

effect %xmm0 <- 0 
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Comparison:  ucomiss/d

 Affects only condition codes: CF, ZF

 use unsigned branches

 If NaN, set all of condition codes: 
CF, ZF and PF

 Use jp/jnp to branch on PF

Others

 maxss/maxsd - … max

For example: maxss %xmm3, %xmm5

Effect: xmm5 ← max(xmm5, xmm3)

 minss/minsd - … min

 sqrtss/sqrtsd - … square root

http://www.cs.sfu.ca/CourseCentral/295/bbart/refs/jumps.html


Example
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fadd:

# ---------

# float fadd(float x, float y){

#    return x + y;

# }

# ---------

# x in %xmm0, y in %xmm1   

addss %xmm1, %xmm0

ret

dadd:

# ---------

# double dadd(double x, double y){

#    return x + y;

# }

# ---------

# x in %xmm0, y in %xmm1   

addsd %xmm1, %xmm0

ret
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Storing Data in Various Segments of 

Memory - Optional



Storing Data in Memory

 Data on stack memory (on stack frame of function)

 Temporarily use and recycle

 Lasts through life of function call

 Data on heap 

 Temporarily use and recycle

 Lasts until memory is “free’ed”

 Data in fixed memory, i.e., Data segment

 Statically allocated data

 e.g., global variables, static variables, string constants

 Lasts while program executes
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This material is optional

–> It is for your 

learning pleasure!

We already 

know about

data on stack 

and on heap.

What does this 

type of data 
look like?



Data stored in Data Segment

 Declared using a label & a directive for size

 label is a memory address

 size: .byte, .word, .long, .quad

 initial value

 Example 1:
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address:
0   1   2   3   4   5   6   7

2 4

C:

long x = 6;

long y = 9;

void main {

. . .

}

x86-64:

x: .quad 6 # 0x0000000000000006

y: .quad 9 # 0x0000000000000009

M[]

Data Segment

y:
x:

09 00 00 00 00 00 00 00

06 00 00 00 00 00 00 00

LSB

81

This material is optional

–> It is for your 
learning pleasure!

Remember: 
little endian!



30

. . .                 

Data stored in Data Segment 

– Example 2

#

This material is optional

–> It is for your 

learning pleasure!



Data stored on Stack 

– Example 1
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This material is optional

–> It is for your 

learning pleasure!

How does this large # end up representing 12 and 34:
• Express $146028888076 in binary

• Transform binary to hex => 0x000000220000000c

• Read hex’s LSB (32 bits) (0000000c) as a decimal 

=> 12

• Read hex’s MSB (32 bits) (00000022) as a decimal 

=> 34

• Repeat for other 2 operands of movabsq

instructions



Summary - 1

 What is a buffer overflow

 When function writes more data in array than array can hold on stack

 Effect: data kept on the stack (value of other local variables and registers, 
return address) may be corrupted

-> Stack smashing

 Why buffer overflow spells trouble -> it creates vulnerability

 Allowing hacker attacks

 How to protect system against such attacks

1. Avoid creating overflow vulnerabilities in the code that we write

By always checking bounds and calling “safe” library functions that 
consider size of array

2. Employ system-level protections

Randomized initial stack pointer and non-executable code segments

3. Use compiler (like gcc) security features:  

 Stack “canary” value and endbr64 instruction32



Summary - 2

 Floating point data and operations

Data held and manipulated in XMM registers

Assembly language instructions similar to integer

assembly language instructions we have seen so far
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Start a new unit …

 Instruction Set Architecture (ISA)

Next Lecture


