CMPT 295

Unit - Machine-Level Programming
Lecture 22 — Buffer Overflow + Floating-point data & operations

Last lecture

= Manipulation of 2D arrays — in x86-64

» From x86-64's perspective, a 2D array is a contiguously
allocated region of R * C * L. bytes in memory where
L= sizeof(T) and T ->data type of elements stored
INn array

» 7D Array layout in memory: Row-Major ordering
®» Memory address of eachrow A[i]: A + (i * C * L)

» Memory address of each elementA[i]1[J]:
A+ (i *C*1L) + (jJ * L)
=> A+ (i *C + j) *L

Today's Menu

Buffer Overflow
Floating-point data & operations

Buffer Overflow

C and Stack ... so far

» C does not perform any bound checks on arrays

» | ocal variables in C programs
» Callee and caller savedregisters >~ stored on the stack

» Return addresses _

®» As we saw in Lab 2 and Lab 4, this may lead to frouble

What kind of frouble<¢
-> puffter overflow (overrun)

» |f function does not perform bound-check when
writing to a local array ...

Here is a an example of a bound-check:
if input size <= array size

write input into array

... then it may write more data that the allocated
space (to array) can hold, hence overflowing the
array -> buffer overflow

= Effect: the function may end up writing over, i.e., °XSP
corrupting, data kept on the stack such as:

» Value of local variables and registers
» Return address
= Stack smashing

MI]
Stack

re’rurn’bddress

Unu%ajﬂﬁckspoce

local wvar

4

Gl D

>

Top

Demo the trouble -> buffer overflow

Why is buffer overflow a problem

» Corrupted data
» Corrupted return address
= Which may lead to segmentation fault

» How?

» Which also makes a system vulnerable to attacks
» How?e

|

void funcl () {
func2 () ;

// C statement
at return
address A

}

|

/

int func2 () {
char buf[64];
gets (buf) ;

L] L] L]
L]
)) : ’

}

\

Code Injection attack

» An “atfacker” could overflow the

buffer ...

array of char’s

... by inputting a string that contains byte
representation of malicious executable
code (exploit code) instead of legitimate
characters

The string is written to array buf on stack

and overwrites return address A with @
return address that points to exploif code

Srsp—»

When func2 executes ret insfruction, it

pops this erroneous return address onto
PC ($rip) and jumps to exploit code

Microprocessor starts executing the
exploit code at this location

MI]
Stack

Z

funcl
stack
frame

!

reiur%dress X
v A

func2
buf [64] > stack
- frame
c} \
) J
Top

How to protection against such afttack

1. Avoid creating overflow vulnerabilities in the code that we
write by always checking bounds

» For example, by calling library functions that limit string
lengths

» “Unsafe” : gets (), strepy (), strcat (), sprintf (), ..

» These functions can generate a byte sequence
without being given any indication of the size of the
destination buffer (see next slide)

» “Safe’: fgets ()

From our Lab 4

lvoid procl(char *s, int *a, int *b) ({
int wv;
int t;
t = *3;
Vv = proc2(*a, *b);

sprintf{s, "The result of proc2(%d,%d) is %d.", *a, *b, v);

*3 = *p -
*h = €
return;

Suggestion from developer.apple.com

/ Y o

Copies up to char destination[5]; /\0

sizeof(destination) -> n char * source = “LARGER”;

characters from the : (destinati }

string pointed to b strepyldestination, source); :) :

sourgcy:s to desﬁnaﬁzlan In @ Copies the s’rrllng po!nfed
' LI AlRBRIGI|E = ‘ W ‘ to by source (including

a case where the length | the null character) to the

of source is less than n,
the remainder of

destinafion will be . . .))
padded with null bytes. hstrncpy{ destination, source, sizeof({destination));

In a case where the
length of source is @ Ll A|R|G]|E

desfination and retfurns it.

greater than n, the

destinafion will contain Copies up to
a truncated version of . . _ _ . sizeof(destination) - 1
source. stricpy(destination, source, sizeofl(destinationll)i ->n-1 characters

from null-terminated
@ L A H G | 0 ... ‘ source to destination,
it then “null” terminates

. , desfination and refurns
https://linux.die.net/man/3/stricpy the length of source.

How to protection against such afttack

2. Employ system-level protections
-> Randomized stack offsefts

° M]
= At start of program, system allocates S >
random amount of space on stack
» Effect: Shifts stack addresses (3rsp) for S rsp—af
entire program Stack
Top

» Shifts the memory address of all the stack
frames allocated to program’s functions
when they are called

» Hence, makes it difficult for hackers to
predict start of each stack frame (hence

where exploit code may have been
inserted) since stack is repositioned each
time program executes

How to protection against such afttack

2. Employ system-level protections

-> Non-executable code segments Sgék
= |n the old days of x86, memory c funcl
segments marked as either read-only stack
or writeable (both implied readable) > - : frame
=> 2 types of permissions RASCIRS
func2
= Could execute anything readable 4 Sl \ Stlal:,f
= x86-64 has added an explicit [O frame
executable permission s rsp -Bb
» Stack segment now marked as non-
executable

Any attempt to execute this code will fail

How to protection against such attack

main: # main.c from our Lab 4
endbr64
pushg Srbp

3. Compiler (like gcc) uses a stack
value subg $64, Srsp

» History: Starting early 1900'’s,
canaries used in the coal mines to

detect gas leaks
leag 16 (%rsp), S%rbp

Push a randomized value
between an array and return
address on stack (remember our

Lab 4) jne .L5
Before executing a ret instruction, addg $64, %rsp
value is checked to see if it popqg %rbp
has been corrupted ret
.L5:

» |f 5O, failure reported
. call _ stack chk fail@PLT

How to protection against such afttack

3. Newest version of our gcc compiler |28

(version 8 and up) uses Control-Flow 'LFB?iEi startproc
Enforcement Technology (CET) endbr64

pushqg Srbp
.cfi def cfa offset 1
.cfi offset 6, -

= Microprocessor tracks indirect branching movl $9, %ecx

and ensures that all indirect calls lead to movl $¢, %edx
(legal) functions starting with endbré4

= |nstruction endbré64 (End Branch 64 bit)
-> Terminate Indirect Branch in 64 bit

= |f function does -> microprocessor infers
that function is safe to execute

= |f function does not -> microprocessor
infers that conftrol flow may have been
manipulated by some exploit code, i.e.,
function is unsafe to execute and aborts!

Brief overview of
floating-point data and operations

Background

®» Once upon a time in the '90’s ...

» Use of computer graphics and image processing (multimedia)
applications were on the rise

= Microprocessors (i.e., machine instruction sets) designed to
support such applications

»|deq: speed up microprocessors by executing single
instruction on multiple data -> SIMD

®» Since then, microprocessors and their machine instruction sets
have evolved ...

»SSE (Streaming SIMD Extensions)
» AVX (Advanced Vector EXtensions) -> textbook

Now we introduce
a new set of
registers for floating
point numbers:

Scalar mode

Vegtor mode
cked datq)

x86-64 reqgisters and instructions seen so far are referred to as integer registers and integer instructions

le\lv\ Registers

16 in total, each 16-byte wide (128 bits), named: $xmm0, $xmm1, ..., $xmml15

1 single-precision float (32 bits) 31 0

1 double-precision

double (64 bits) 63 0

[L [[T [[T |

16 single-byte integers

8 16-bit integers

4 32-bit integers

4 single-precision float’s

2 double-precision

double’s

Scalar versus Vector (SIMD) ins’rrucc’[li)ons

B Scalar Operations: Single Precision addss $xmmO0, $xmml

N i
4’€/ S0 (D
N

cked
"V

B SIMD Operations: Single Precision acy_gs S xmmO . $xmml

\"\\% J_(/ %$xmmO

N N N

A A A A

$xmml

$xmml

Scalar versus Vector (SIMD) instructions

B Scalar Operations: Double Precision addsd %$xmmo0, $xmml

$xmmO
e
Ny

$xmml

H SIMD erations: Double Precision
Op addpd %xmmO , $xmml

$xmmO

N\

J3) 2

$xmml

Data movement instructions

|

float mov:

float float mov(float f1,

float *src,

float *dst) {

float f2 = *src;

*dst = f1;

return f£2;

}

o

f1 in %$xmmO, src in $%$rdi, dst in %rsi
movss (%rdi), %Sxmml # f2 = *src

movss $xmm0O, (%rsi) # *dst = f1l
movaps sxmml, %xmmO # return value = f2
ret

The instructions we shall look at in this
lecture are different than the ones
presented in section 3.11 of our
textbook — we shall focus on the scalar
version of these instructions

movss — move single precision
» Mem (32 bits) <--> $xmm

movsd — move double precision
» Mem (64 bits) <--> $xmm

First 2 instructions of program: Memory
referencing operands (i.e., memory
addressing mode operands) specified
in the same way as for the infeger mov*

instructions

movaps/movapd — MOVEe $xmm <--> $xmm
= ap -> aligned packed

Function call and register saving
conventions

» Function call convention

» |[nfeger (and pointeri.e., memory address) arguments passed in
integer reqisters

» Floating point values passed in XMM registers

» Argument 1 to argument 8 passed in $xmm0, $xmm1, ..., $xmm?7

» Result refurned in $xmm0

®» Reqister saving convention

» All XMM registers caller-saved
®» Can use register $xmm8 «» $xmml5 for managing local data

Data conversion instructions

» Converting between data types: (“t" is for “tfruncate”)

cvtsszsd

double

cvtsd’Z2ss

Data manipulation instructions

Arithmetic

addss/addsd - floating point add
subss/subsd - ... subtract
mulss/mulsd- ... mul
divss/divsd- ... div

Logical

andps/andpd
orps/d
xorps/d

®» xorpd %xmm0O, %xmmO

effect $xmm0 <- 0

Comparison: ucomiss/d
» Affects only condition codes: CF, ZF

®» yse unsigned branches

» |f NaN, setf all of condition codes:
CF, ZF and PF

®» Use jp/jnp to branch on PF

Others

® maxss/maxsd-... MOX
For example: maxss $xmm3, %$xmmb
Effect: xmm5 « max(xmm5, xmm3)

® minss/minsd-...MinN

® sqgrtss/sqgrtsd-...square root

http://www.cs.sfu.ca/CourseCentral/295/bbart/refs/jumps.html

Example

fadd
B
float fadd(float x, float vy) {
it return x + y;
)
o
x in %$xmmO, y in %$xmml
addss gxmml, %SxmmO
ret
dadd
B
double dadd(double x, double y) {
return x + y;
)

x in %$xmmO, y in %$xmml
addsd sxmml, SxmmO
ret

Storing Data in Various Segments of
Memory - Optionadl

We already A

know about
data on stack

This material is optional
—> |t is for your

STOring Data In I\/\emory learning pleasure!

7~ ™ Data on stack memory (on stack frame of function)
» Temporarily use and recycle

and on heopj

28

» | asts through life of function call

» Data on heap
» Temporarily use and recycle

__ ™ Lasts untilmemory is “free’ed” v:ho’r d?zs 1hi3
- . ype of data
®» Dafa in fixed memory, i.e., Data segment look like?

» Statically allocated data
®» c.g., global variables, static variables, string constants

» | asts while program executes

This material is op’rioncﬂ
—> |t is for your

learning pleasurel /DOTO stored in Data Segmen’rM

[]

Data Segment
] . .] address:
» Declared using a label & a directive forsize [01.23 45 ¢ 7
. Y. 7'O‘?OOOOOOOOOOOOOO
» |abelis a memory address x: /1,06/00/00]00/00]00]00[00
: LSB
® Size: .byte, .word, .long, .quad Remember:
1 2 4 8 little endian!
» nitial value
» Example 1: ¢c: %x86-64-
long x = 6; x: .quad 6 # 0x0000000000000006
long y = 9; y: .quad 9 # 0x0000000000000009

volid main {

}

main:
.LFB38:

.cfi startproc

subq $¢, %rsp —

.cfl def cfa offset 16 Exqmple 2
movl $¢, %esi

movl $A, %edi #define N 6

call sum_array

movl $.LCO, %esi int A[N] = {12, 34, 56,
movl $eax, %edx

movl $1, %edi void main () {

Xorl $eax, %eax

addq $3, Srsp printf ("The total is %d.

.cfi def cfa offset
Jmp _ printf chk

.long
.long
.long
.long
.long
.long
.ident
.section

n ',-:rl

Data stored in Data Segment

\n", sum array(A,N));

.note.GNU-stack,"", @progbits

return;
}
or .long 12, 34, 56, 78, =90,
This material is optional
—> |t is for your
°C: (Ubuntu 7.3.0-2lubuntul~16.04) 7.3.0" learning pleasure!

main:
.LFB38:
Data stored on Stack T fadioe
subqg $40, %rsp
E I ‘I .cfi def cfa offset 4¢
- qup e movl $¢, %esi
movq $fs:40, %rax
movq $rax, 24 (%rsp)
void main(int argc, char * argv) { xorl $eax, %eax
P movabsqg $, %rax
int A[] = {12, 56, 7 30, 1); i movq %rsp, %rdi
movqg $rax, (%rsp)
printf("The total is ®d.\n", sum array(A movabsq $; ¥rax
movq $rax, 8(%rsp)
return; movabsq $, %rax
movqg $rax, loe(%rsp)
} call sum_array
movl $.LCO, %esi
How does this large # end up representing 12 and 34: movl seax, %edx
* Express $146028888076 in binary movl $1, %edi
« Transform binary to hex => 0x000000220000000¢ xorl $eax, %eax
« Read hex's LSB (32 bits) (0000000c¢) as a decimal call __printf_ chk
This material is optional| =~ 12 v S oo Reongy
. mf”e. X .« Read hex's MSB (32 bits) (00000022) as a decimal Xorq %1s:40, %rax
—> |t is for your > 34 jne .L5
learning pleasurel add $40, %rs
. Repeo’(for other 2 operands of movabsqg _Cfg remember Stgte
instructions .cfi_def cfa offset ¢
31 ret

Summary - |

=» What is a buffer overflow
» When function writes more data in array than array can hold on stack

» Effect: data kept on the stack (value of other local variables and registers,
return address) may be corrupted

-> Stack smashing

» Why buffer overflow spells frouble -> it creates vulnerability
= Allowing hacker aftacks

= How fo protect system against such attacks
1. Avoid creating overflow vulnerabilities in the code that we write

= By always checking bounds and calling “safe” library functions that
consider size of array

2. Employ system-level protections

= Randomized inifial stack pointer and non-executable code segments
3. Use compiler (like gcc) security features:

» Stack “canary” value and endbr64 instruction

Summary - 2

= Floating point data and operations
» Data held and manipulated in XMM registers

» Assembly language instructions similar to integer
assembly language instructions we have seen so far

Next Lecture

Start a new unit ...
® |nstruction Set Architecture (ISA)

