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CMPT 295
Unit - Machine-Level Programming

Lecture 22 – Buffer Overflow + Floating-point data & operations



Last lecture

Manipulation of 2D arrays – in x86-64

From x86-64’s perspective, a 2D array is a contiguously 

allocated region of R * C * L bytes in memory where

L = sizeof( T ) and T -> data type of elements stored 

in array

2D Array layout in memory: Row-Major ordering

Memory address of each row A[i]:  A + (i * C * L)

Memory address of each element A[i][j]:

A + (i * C * L) + (j * L)

=> A + (i * C + j) * L
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Today’s Menu
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 Introduction

 C program -> assembly code -> machine level code

 Assembly language basics: data, move operation

 Memory addressing modes

 Operation leaq and Arithmetic & logical operations

 Conditional Statement – Condition Code + cmovX

 Loops

 Function call – Stack

 Overview of Function Call 

 Memory Layout and Stack - x86-64 instructions and registers

 Passing control 

 Passing data – Calling Conventions

 Managing local data

 Recursion

 Array

 Buffer Overflow

 Floating-point data & operations
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Buffer Overflow



C and Stack … so far

C does not perform any bound checks on arrays

 Local variables in C programs

Callee and caller saved registers

 Return addresses

 As we saw in Lab 2 and Lab 4, this may lead to trouble
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stored on the stack 



What kind of trouble? 
-> buffer overflow (overrun)
 If function does not perform bound-check when 

writing to a local array …

… then it may write more data that the allocated

space (to array) can hold, hence overflowing the

array -> buffer overflow

 Effect: the function may end up writing over, i.e., 

corrupting, data kept on the stack such as:

 Value of local variables and registers

 Return address

 Stack smashing
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Top

M[]

%rsp

Stack

return address

buf[  ]

Unused stack space

local var

…
Here is a an example of a bound-check:
if input size <= array size

write input into array



Demo the trouble -> buffer overflow
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Why is buffer overflow a problem

 Corrupted data

 Corrupted return address

 Which may lead to segmentation fault

 How?

 Which also makes a system vulnerable to attacks

 How? 
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Code injection attack

 An “attacker” could overflow the 

buffer …

 … by inputting a string that contains byte 

representation of malicious executable 

code (exploit code) instead of legitimate 

characters

 The string is written to array buf on stack 

and overwrites return address A with a 

return address that points to exploit code 

 When func2 executes ret instruction,  it 

pops this erroneous return address onto 
PC (%rip) and jumps to exploit code

 Microprocessor starts executing the 

exploit code at this location
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Top

M[]

%rsp

Stack

return address A

buf[64]

int func2() {

char buf[64]; 

gets(buf); 

...

return ...; 

}

void func1(){

func2();

// C statement

at return

address A

...

}

func1

stack 
frame

func2

stack 
frame

…

…
array of char’s



How to protection against such attack

1. Avoid creating overflow vulnerabilities in the code that we 
write by always checking bounds

 For example, by calling library functions that limit string 
lengths

 “Unsafe” : gets(), strcpy(), strcat(), sprintf(), …

 These functions can generate a byte sequence 
without being given any indication of the size of the 
destination buffer (see next slide)

 “Safe”: fgets()
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From our Lab 4
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Suggestion from developer.apple.com
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char destination[5];

char * source = “LARGER”;              

https://linux.die.net/man/3/strlcpy

Copies the string pointed 

to by source (including 
the null character) to the 

destination and returns it. 

Copies up to 

sizeof(destination) -> n
characters from the 

string pointed to by 

source to destination. In 
a case where the length 

of source is less than n, 
the remainder of 

destination will be 
padded with null bytes.

In a case where the 

length of source is 

greater than n, the 

destination will contain 
a truncated version of 

source.





Copies up to 

sizeof(destination) - 1

-> n - 1 characters 
from null-terminated

source to destination, 
it then “null” terminates

destination and returns 

the length of source.





How to protection against such attack

2. Employ system-level protections

-> Randomized stack offsets

 At start of program, system allocates 
random amount of space on stack

 Effect: Shifts stack addresses (%rsp) for 
entire program

Shifts the memory address of all the stack 
frames allocated to program’s functions 
when they are called

 Hence, makes it difficult for hackers to 
predict start of each stack frame (hence 
where exploit code may have been 
inserted) since stack is repositioned each 
time program executes
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How to protection against such attack

2. Employ system-level protections

-> Non-executable code segments

 In the old days of x86, memory 

segments marked as either read-only

or writeable (both implied readable)  

=> 2 types of permissions

Could execute anything readable

x86-64 has added an explicit 

executable permission

Stack segment now marked as non-

executable
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Top
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exploit
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Any attempt to execute this code will fail
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How to protection against such attack

3. Compiler (like gcc) uses a stack 

canary value

 History: Starting early 1900’s, 

canaries used in the coal mines to 
detect gas leaks

 Push a randomized canary value 

between an array and return 

address on stack (remember our 

Lab 4)

 Before executing a ret instruction, 

canary value is checked to see if it 
has been corrupted

 If so, failure reported
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main:  # main.c from our Lab 4

endbr64

pushq %rbp

…

subq $64, %rsp

movq %fs:40, %rax

movq %rax, 56(%rsp)

…

leaq 16(%rsp), %rbp

…

movq 56(%rsp), %rax

xorq %fs:40, %rax

jne .L5

addq $64, %rsp

popq %rbp

ret

.L5:

call __stack_chk_fail@PLT



How to protection against such attack

3. Newest version of our gcc compiler 
(version 8 and up) uses Control-Flow 
Enforcement Technology (CET)

 Instruction endbr64 (End Branch 64 bit) 
-> Terminate Indirect Branch in 64 bit

Microprocessor tracks indirect branching 
and ensures that all indirect calls lead to 
(legal) functions starting with endbr64

 If function does -> microprocessor infers 
that function is safe to execute

 If function does not -> microprocessor 
infers that control flow may have been 
manipulated by some exploit code, i.e., 
function is unsafe to execute and aborts!
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…

Source: https://stackoverflow.com/questions/56905811/what-does-the-endbr64-instruction-actually-do

From 

stackoverflow



17

Brief overview of 

floating-point data and operations



Background

Once upon a time in the ’90’s …

Use of computer graphics and image processing (multimedia) 

applications were on the rise

Microprocessors (i.e., machine instruction sets) designed to 

support such applications

Idea: speed up microprocessors by executing single 

instruction on multiple data -> SIMD

 Since then, microprocessors and their machine instruction sets 

have evolved …

SSE (Streaming SIMD Extensions)

AVX (Advanced Vector EXtensions) -> textbook
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XMM Registers
 16 in total, each 16-byte wide (128 bits), named: %xmm0, %xmm1, …, %xmm15

 1 single-precision float (32 bits)

 1 double-precision double (64 bits)

 16 single-byte integers

 8 16-bit integers

 4 32-bit integers

 4 single-precision float’s

 2 double-precision double’s

Vector mode

(packed data)

Scalar mode

031

19

063

x86-64 registers and instructions seen so far are referred to as integer registers and integer instructions

Now we introduce 

a new set of 

registers for floating 

point numbers:



Scalar versus Vector (SIMD) instructions
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+

%xmm0

%xmm1

addss %xmm0,%xmm1 Scalar Operations: Single Precision

 SIMD Operations: Single Precision

+ + + +

%xmm0

%xmm1

addps %xmm0,%xmm1



Scalar versus Vector (SIMD) instructions
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 Scalar Operations: Double Precision

 SIMD Operations: Double Precision

+

%xmm0

%xmm1

addsd %xmm0,%xmm1

+

%xmm0

%xmm1

addpd %xmm0,%xmm1

+



Data movement instructions

 The instructions we shall look at in this 
lecture are different than the ones 
presented in section 3.11 of our 
textbook – we shall focus on the scalar
version of these instructions

 movss – move single precision 

 Mem (32 bits) <--> %xmm

 movsd – move double precision

 Mem (64 bits) <--> %xmm

 First 2 instructions of program: Memory 
referencing operands (i.e., memory 
addressing mode operands) specified 
in the same way as for the integer mov* 
instructions

 movaps/movapd – move %xmm <--> %xmm

 ap -> aligned packed20

float_mov:

# ---------

# float float_mov(float f1, 

#                 float *src, 

#                 float *dst) {

# float f2 = *src;

# *dst = f1;

# return f2;

# }

# ---------

# f1 in %xmm0, src in %rdi, dst in %rsi

movss (%rdi), %xmm1  # f2 = *src

movss %xmm0, (%rsi)  # *dst = f1

movaps %xmm1, %xmm0   # return value = f2

ret



Function call and register saving 

conventions

 Function call convention

 Integer (and pointer i.e., memory address) arguments passed in 
integer registers

 Floating point values passed in XMM registers

 Argument 1 to argument 8 passed in %xmm0, %xmm1, ..., %xmm7

 Result returned in %xmm0

 Register saving convention

 All XMM registers caller-saved

Can use register %xmm8 ↔ %xmm15 for managing local data

21



Data conversion instructions
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int

long

float double

Converting between data types:   (“t” is for “truncate”)



Data manipulation instructions

Arithmetic

 addss/addsd - floating point add

 subss/subsd - … subtract

 mulss/mulsd - … mul

 divss/divsd - … div

Logical

 andps/andpd

 orps/d

 xorps/d

 xorpd %xmm0, %xmm0

effect %xmm0 <- 0 
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Comparison:  ucomiss/d

 Affects only condition codes: CF, ZF

 use unsigned branches

 If NaN, set all of condition codes: 
CF, ZF and PF

 Use jp/jnp to branch on PF

Others

 maxss/maxsd - … max

For example: maxss %xmm3, %xmm5

Effect: xmm5 ← max(xmm5, xmm3)

 minss/minsd - … min

 sqrtss/sqrtsd - … square root

http://www.cs.sfu.ca/CourseCentral/295/bbart/refs/jumps.html


Example
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fadd:

# ---------

# float fadd(float x, float y){

#    return x + y;

# }

# ---------

# x in %xmm0, y in %xmm1   

addss %xmm1, %xmm0

ret

dadd:

# ---------

# double dadd(double x, double y){

#    return x + y;

# }

# ---------

# x in %xmm0, y in %xmm1   

addsd %xmm1, %xmm0

ret
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Storing Data in Various Segments of 

Memory - Optional



Storing Data in Memory

 Data on stack memory (on stack frame of function)

 Temporarily use and recycle

 Lasts through life of function call

 Data on heap 

 Temporarily use and recycle

 Lasts until memory is “free’ed”

 Data in fixed memory, i.e., Data segment

 Statically allocated data

 e.g., global variables, static variables, string constants

 Lasts while program executes
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This material is optional

–> It is for your 

learning pleasure!

We already 

know about

data on stack 

and on heap.

What does this 

type of data 
look like?



Data stored in Data Segment

 Declared using a label & a directive for size

 label is a memory address

 size: .byte, .word, .long, .quad

 initial value

 Example 1:
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address:
0   1   2   3   4   5   6   7

2 4

C:

long x = 6;

long y = 9;

void main {

. . .

}

x86-64:

x: .quad 6 # 0x0000000000000006

y: .quad 9 # 0x0000000000000009

M[]

Data Segment

y:
x:

09 00 00 00 00 00 00 00

06 00 00 00 00 00 00 00

LSB

81

This material is optional

–> It is for your 
learning pleasure!

Remember: 
little endian!
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. . .                 

Data stored in Data Segment 

– Example 2

#

This material is optional

–> It is for your 

learning pleasure!



Data stored on Stack 

– Example 1

31

This material is optional

–> It is for your 

learning pleasure!

How does this large # end up representing 12 and 34:
• Express $146028888076 in binary

• Transform binary to hex => 0x000000220000000c

• Read hex’s LSB (32 bits) (0000000c) as a decimal 

=> 12

• Read hex’s MSB (32 bits) (00000022) as a decimal 

=> 34

• Repeat for other 2 operands of movabsq

instructions



Summary - 1

 What is a buffer overflow

 When function writes more data in array than array can hold on stack

 Effect: data kept on the stack (value of other local variables and registers, 
return address) may be corrupted

-> Stack smashing

 Why buffer overflow spells trouble -> it creates vulnerability

 Allowing hacker attacks

 How to protect system against such attacks

1. Avoid creating overflow vulnerabilities in the code that we write

By always checking bounds and calling “safe” library functions that 
consider size of array

2. Employ system-level protections

Randomized initial stack pointer and non-executable code segments

3. Use compiler (like gcc) security features:  

 Stack “canary” value and endbr64 instruction32



Summary - 2

 Floating point data and operations

Data held and manipulated in XMM registers

Assembly language instructions similar to integer

assembly language instructions we have seen so far
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Start a new unit …

 Instruction Set Architecture (ISA)

Next Lecture


