
1

CMPT 295
Unit - Machine-Level Programming

Lecture 19 – Assembly language – Program Control –

Function Call and Stack – Managing Local Data

Last lecture

Passing data mechanism

x86-64 function call convention:

First 6 arguments

return value

%rdi

%rsi

%rdx

%rcx

%r8

%r9

%rax

argument 7

• • •

argument 8

argument n

• • •

Stack

%rsp

2

Stored onto

the stack in

reverse order!

argument 1 ->

argument 2 ->

argument 3 ->

argument 6 ->

argument 5 ->

argument 4 ->

Today’s Menu
 Introduction

 C program -> assembly code -> machine level code

 Assembly language basics: data, move operation

 Memory addressing modes

 Operation leaq and Arithmetic & logical operations

 Conditional Statement – Condition Code + cmovX

 Loops

 Function call – Stack

 Overview of Function Call

 Memory Layout and Stack - x86-64 instructions and registers

 Passing control

 Passing data – Calling Conventions

 Managing local data

 Recursion

 Array

 Buffer Overflow

 Floating-point operations
3

To recap …

Overview of Function Call mechanisms:

What happens when a function (caller) calls another

function (callee)?

1. Control is passed …

To the beginning of the code in callee function

Back to where callee function was called in caller function

2. Data is passed …

To callee function via function parameter(s)

Back to caller function via return value

3. Memory is …

Allocated when callee function starts executing

Deallocated when callee function stops executing

4

… allocated a stack
frame on the stack,
but what can be stored
on this stack frame?

Last lecture:

Managing local data

When writing assembly programs, what can we use

when we need space for our local data?

We can use registers!

Yes! Registers are our first choice as they are the fastest

storage location on a computer.

OK! but, since registers are shared by all functions in

x86-64 assembly language, we need to follow some

convention, otherwise … :

who:

• • •

movq $15213, %rbx

call amI

addq %rbx, %rax

• • •

ret

amI:

• • •

subq $18213, %rbx

• • •

ret

5

3.

%rbx

Register Table

When we need space for our local data …

1. Registers

A function can utilise unused registers (only when needed)

Some registers are referred to as callee saved registers:

%rbx, %rbp, %r12 to %r15 (and %ebx, %bx, %bl, …)

Callee saved registers means that …

the callee function must preserve the values of these registers

before using them,

then restore their values before the control is returned
(through the execution of ret instruction) to the caller

function6

3.

x86-64 function call convention

Managing local data - “register saving”

convention => callee saved registers

“register saving”

convention:

1) callee saved
registers

How can callee preserve the values of these callee saved
registers before using them?

Example of a scenario:

Caller uses %r13

Caller calls callee

At the start of callee, callee pushq %r13

Then callee uses %r13

Then before execution flow returns

from callee to caller (via ret),

callee popq %r13

The execution flow returns to caller

which continues using %r13

If callee pushq more than

1 register, then callee
popq them in reverse order

callee saved registers

Upon return from

callee, caller can

always assume that

these registers still

contain the values

caller stored in them

before calling callee!
7

3.

x86-64 function call convention

Managing local data - “register saving”

convention => callee saved registers

1. Registers (cont’d)

Some registers are referred to as caller saved registers:

%r10, %r11, %rax and all 6 registers used for passing data

as arguments to callee (and %r10d, %r10w, %r10b, …)

Caller saved registers means that …

the caller function must preserve the values of these

registers before …

 setting up the callee‘s argument(s) into the appropriate

“data passing as argument” register(s) and

calling the callee

then once the control is returned to the caller, the caller

must restore their values before using them8

3.

x86-64 function call convention

Managing local data - “register saving”

convention => caller saved registers

“register saving”

convention:

2) caller saved
registers

How can caller preserve the values of these caller saved
registers before using them?

Example of a scenario:

Caller uses %r10

Before calling callee, caller pushq %r10

then calls callee

Callee uses %r10

Then after the execution flow

has returned from callee to

caller (via ret), caller popq %r10

Caller continues using %r10

caller saved registers

Callee can always

assume that caller has

saved the content of

these registers, so it is

“safe” for callee to

use them!

9

3.

x86-64 function call convention

Managing local data - “register saving”

convention => caller saved registers

If caller pushq more than
1 register, then caller popq

them in reverse order

x86-64 “register saving” convention
 Solution 1:

 Solution 2:

who:

• • •

movq $15213, %rbx

call amI

addq %rbx, %rax

• • •

ret

amI:

subq $18213, %rbx

ret

who:

• • •

movq $15213, %r10

call amI

addq %r10, %rax

• • •

ret

amI:

• • •

subq $18213, %r10

• • •

ret

10

11

Managing local data => spilling

When writing assembly programs, what can we use

when we need space for our local data?

We can use stack!

12

3.

2. Stack

A function can use the stack to store the values of its

local variables and for temporary space

Set-up and Clean-up code:

Example: subq $16, %rsp and addq $16, %rsp

To spill onto the stack:

 Example: movq %rax, 56(%rsp)

Must remember to

clean-up the stack

before returning to

caller!

If we run out

of registers!

Local variables on Stack – Example

call_incr:

subq $16, %rsp

movq $15213, 8(%rsp)

movl $3000, %esi

leaq 8(%rsp), %rdi

call incr

addq 8(%rsp), %rax

addq $16, %rsp

ret

long call_incr() {

long v1 = 15213;

long v2 = incr(&v1, 3000);

return v1+v2;

}
long incr(long *p, long val)

{

long x = *p;

long y = x + val;

*p = y;

return x;

}

M[]

Stack
%rsp

13

14

Summary - x86-64 “register saving” convention

caller saved registers:

Caller must save & restore

Can be modified by callee

%rax

%rdx

%rcx

Return value

%r8

%r9

%r10

%r11

%rdi

%rsi

Parameters/

arguments

%rbx

%rsp

%rbp

%r12

%r13

%r14

callee saved registers:

 Callee must save & restore
before modifying

%r15

15

Summary - x86-64 conventions and stack frame

caller preserves caller saved registers

caller passes arguments

caller calls callee

callee preserves callee saved registers

callee constructs local vars (get stack space)

callee performs function

callee recycles local vars (restore stack space)

callee restores callee saved registers

callee returns to caller

caller pops arguments

caller restores caller saved registers

Stack

Top

callee saved

regs

local vars

return address

caller
frame

callee
frame

args 7 … n

caller saved regs

M[]

%rsp

Increasing
memory
addresses

16
16

…

Next lecture
 Introduction

 C program -> assembly code -> machine level code

 Assembly language basics: data, move operation

 Memory addressing modes

 Operation leaq and Arithmetic & logical operations

 Conditional Statement – Condition Code + cmovX

 Loops

 Function call – Stack

 Overview of Function Call

 Memory Layout and Stack - x86-64 instructions and registers

 Passing control

 Passing data – Calling Conventions

 Managing local data

 Recursion

 Array

 Buffer Overflow

 Floating-point operations
17

