CMPT 295

Unit - Machine-Level Programming
Lecture 14 — Assembly language — Function Call and Stack

Compiler can
produce different
instruction
combinations when
assembling the
same C code.

cmp* and test*
instructions set
condition codes

Last Lecture

» |n x86-64 assembly, there are no conditional statements, however,
we can alter the execution flow of a program by using ...

® cmp* insfruction (compare)
» §X instructions (jump)
»

call and ret insfructions
®» cmovX instructions -> conditional move

» |n x86-64 assembly, there are no iterative statements, however, we
can alter the execution flow of a program by using ...

® cmp* instruction
» X instructions (jump)
» CPU uses these condifion codes to decide whether a ...
® jX instruction (conditional jump) is to be exectued or a
® cmovX instruction (conditional move) is to be exectued

») |oop patterns:
» “coding the false condition first” -> while loops (hence for l0ops)
®» “‘ijump-in-middle” -> while, do-while (hence for loops)

. {—\omewc?ok
Question about while loop:

in C: 0 in assembly: # x in %$edi, y in %esi
while (x < y) { loop:
Loop Pattern 1
// stmts @ cmpl %$edi, %esi Toop:
} jl endloop if cond false
YeTuvn; # stmts goto done:
stmts
jmp loo .
<D Y- X Do —))b)(|ooFs—>¢3 JTP P . goto loop:
Lo 7y<>(em’fS\Oop—-) endloop: one:
=0 = ¥ =X exis locpny ret

Would this assembly code be ot c\oc\e, |
the equivalent of our C code?
Weneed jle

Demo: alternative way of implementing
if/else In assembly language

®» jfelse.cand ifelse.s
posted on our course web site

Le Shal hae a \ak al R cece dw«ﬁvxg kective |5

oux yexlew \ectuxe !

Today's Menu

»
»
»
»
»
»
»
= Function call - Stack
= Overview of Function Call
= Memory Layout and Stack
»
»
»
»
»
»

What happens when a function (caller)
calls another function (callee)?

1. Controlis passed (i.e., program counter PC is set)... |[Vo1d who(.) |
int sum = 0;

» To the beginning of the code in callee function VMOQV[]
» Back to where callee function was called in aml { '
. sum X t Vv,
caller function = Ry
2. Datais passed ... /}:&ziﬁse::::
int amI (int 1)

» To callee function via function parameter(s) :

» Back to caller function via return value int t = 3*i;

. int 107 ;
3. Memoryis ... ot Vit

» Allocated when callee function starts executing \ return (VIt});
i

» Deallocated when callee function stops executing

» Above mechanisms implemented with machine code instructions
and described as a set of conventions (which is part of ISA)

Remember from Lecture 2:
Closer look at memory

. . Compressed view of memory
®» Seen as a linear (contiguous)

array of bytes Address M[]
) size—8
» | pbyte (8 bits) smallest .
addressable unit of memory L3 ¢
» Fach byte has a unique address Siggfﬁi
®» Byte-addressable memory 2282834_
» Computer reads a word worth of 0x0501 OXO%OQL 0x o0
bits at a time (=> word size) 0x0002] 0x0D05

0x0003 0x0006

MI[]

MemOry LOYOUT O0x00007FFFFFFFFFFEF E;r:kel
/= Stack 1
» Runtime stack, e. g., local variables
=» Heap
» Dynamically allocated as needed, explicitly released
(freed)
» When call malloc(), free(), new(), delete[], ...
=» Data
egmenits < » Statically allocated data, e.g., global vars, static vars, string S.harefj
constants Libraries
» Text
» Executable machine instructions 4
» Read-only
. . Heap
= Shared Libraries
» Executable machine instructions Data
™= Read-only 0x0000000000400000 [T€Xt
0x0000000000000000

M[]

Memory Allocation Example el

Stack

Where #include ... 1

Cﬁjeg char hugeArray[l << 31]; /* 231 = 2GB */
everything | int global = 0;
goe

int useless () { return 0; }

int main () Shared
{ Libraries
void *ptrl, *ptr2;
int local = 0;
ptrl = malloc(l << 28); /* 228 = 256 MB*/ $
ptr2 = malloc(l << 8); /* 28 = 256 B*/ Heap
| Data
/* Some print statements ... */

Text

}

. Some
Closer look at function call pattern segment

in MJ[]

» A function may call a function, which may
call a function, which may call a function, ...

who (...) { are (...) | yvou (...) {

you () ;
are();
you () ;

} } }

» When a function (callee) terminates and returns, its most
recent caller resumes which eventually terminates and
returns and its most recent caller resumes ...

» Does this pattern remind you of anythinge

Stack - Review

Definition:

A stack is a last-in-first-out (LIFO) data
stfructure with two characteristic
operations:

®» push (data)

-
-

®» data = pop() or pop(&data) =
Do not have access to anything

except what is on (at) top

Source: https://www.thebroad.org/art/
robert-therrien/no-title-8

Summary

» Function call mechanisms: 1) passing control, 2) passing data, 3)
managing local data on the stack

» Memory layout
» Stack (local variables ...)
» Heap (dynamically allocated data)

= Data (statically allocated data)
» Text / Shared Libraries (program code)

» A “stack” is the right data structure for function call / return

Next Lecture

»
»
»
»
»
»
»
= Function call = Stack
»
»
= Passing control
»
»
»
»
»

x86-64 instructions and registers

