
1

CMPT 295
Unit - Machine-Level Programming

Lecture 14 – Assembly language – Function Call and Stack

Carnegie Mellon

Last Lecture

 In x86-64 assembly, there are no conditional statements, however,
we can alter the execution flow of a program by using …

 cmp* instruction (compare)

 jX instructions (jump)

 call and ret instructions

 cmovX instructions -> conditional move

 In x86-64 assembly, there are no iterative statements, however, we
can alter the execution flow of a program by using …

 cmp* instruction

 jX instructions (jump)

 CPU uses these condition codes to decide whether a …

 jX instruction (conditional jump) is to be exectued or a

 cmovX instruction (conditional move) is to be exectued

 2 loop patterns:

 “coding the false condition first” -> while loops (hence for loops)

 “jump-in-middle” -> while, do-while (hence for loops)

cmp* and test*

instructions set

condition codes

Compiler can

produce different

instruction

combinations when

assembling the

same C code.

2

Question about while loop:

in assembly: # x in %edi, y in %esi

loop:

cmpl %edi, %esi

jl endloop

stmts

jmp loop

endloop:

ret

in C:

while (x < y) {

// stmts

}

loop:

if cond false

goto done:

stmts

goto loop:

done:

Loop Pattern 1

Would this assembly code be

the equivalent of our C code?
3

Demo: alternative way of implementing
if/else in assembly language

 ifelse.c and ifelse.s

posted on our course web site

4

Today’s Menu

 Introduction

 C program -> assembly code -> machine level code

 Assembly language basics: data, move operation

 Memory addressing modes

 Operation leaq and Arithmetic & logical operations

 Conditional Statement – Condition Code + cmovX

 Loops

 Function call – Stack

 Overview of Function Call

 Memory Layout and Stack - x86-64 instructions and registers

 Passing control

 Passing data – Calling Conventions

 Managing local data

 Recursion

 Array

 Buffer Overflow

 Floating-point operations
5

What happens when a function (caller)

calls another function (callee)?

1. Control is passed (i.e., program counter PC is set)…

 To the beginning of the code in callee function

 Back to where callee function was called in
caller function

2. Data is passed …

 To callee function via function parameter(s)

 Back to caller function via return value

3. Memory is …

 Allocated when callee function starts executing

 Deallocated when callee function stops executing

 Above mechanisms implemented with machine code instructions

and described as a set of conventions (which is part of ISA)

void who(…) {

int sum = 0;

...

y = amI(x);

sum = x + y;

return;

}

int amI(int i)

{

int t = 3*i;

int v[10];

...

return v[t];

}

6

Remember from Lecture 2:

Closer look at memory

 Seen as a linear (contiguous)

array of bytes

 1 byte (8 bits) smallest

addressable unit of memory

 Each byte has a unique address

 Byte-addressable memory

Computer reads a word worth of

bits at a time (=> word size)

Compressed view of memory

7

Memory Layout

 Stack

 Runtime stack, e. g., local variables

 Heap

 Dynamically allocated as needed, explicitly released
(freed)

 When call malloc(), free(), new(), delete[], ...

 Data

 Statically allocated data, e.g., global vars, static vars, string
constants

 Text

 Executable machine instructions

 Read-only

 Shared Libraries

 Executable machine instructions

 Read-only

0x00007FFFFFFFFFFF Stack

Text
Data

Heap

0x0000000000400000

Shared
Libraries

0x0000000000000000

M[]

segments

Kernel

8

9

#include ...

char hugeArray[1 << 31]; /* 231 = 2GB */

int global = 0;

int useless(){ return 0; }

int main ()

{

void *ptr1, *ptr2;

int local = 0;

ptr1 = malloc(1 << 28); /* 228 = 256 MB*/

ptr2 = malloc(1 << 8); /* 28 = 256 B*/

/* Some print statements ... */

}

Where

does

everything

go?

Memory Allocation Example

9

Stack

Text
Data

Heap

Shared
Libraries

M[]

Kernel

Closer look at function call pattern

 A function may call a function, which may

call a function, which may call a function, …

When a function (callee) terminates and returns, its most

recent caller resumes which eventually terminates and

returns and its most recent caller resumes …

 Does this pattern remind you of anything?

who(…) {

...

...

are();

...

...

}

are(…) {

...

you();

...

you();

...

}

you(…) {

...

...

...

...

...

}

Some

segment

in M[]

10

Stack - Review

Definition:

A stack is a last-in-first-out (LIFO) data

structure with two characteristic

operations:

 push(data)

 data = pop() or pop(&data)

Do not have access to anything

except what is on (at) top

Source: https://www.thebroad.org/art/

robert-therrien/no-title-8

11

Summary

 Function call mechanisms: 1) passing control, 2) passing data, 3)

managing local data on the stack

 Memory layout

 Stack (local variables …)

 Heap (dynamically allocated data)

 Data (statically allocated data)

 Text / Shared Libraries (program code)

 A “stack” is the right data structure for function call / return

12

Next Lecture

 Introduction

 C program -> assembly code -> machine level code

 Assembly language basics: data, move operation

 Memory addressing modes

 Operation leaq and Arithmetic & logical operations

 Conditional Statement – Condition Code + cmovX

 Loops

 Function call – Stack

 Overview of Function Call

 Memory Layout and Stack - x86-64 instructions and registers

 Passing control

 Passing data – Calling Conventions

 Managing local data

 Recursion

 Array

 Buffer Overflow

 Floating-point operations
13

