
1

CMPT 295
Unit - Machine-Level Programming

Lecture 14 – Assembly language – Function Call and Stack

Carnegie Mellon

Last Lecture

 In x86-64 assembly, there are no conditional statements, however,
we can alter the execution flow of a program by using …

 cmp* instruction (compare)

 jX instructions (jump)

 call and ret instructions

 cmovX instructions -> conditional move

 In x86-64 assembly, there are no iterative statements, however, we
can alter the execution flow of a program by using …

 cmp* instruction

 jX instructions (jump)

 CPU uses these condition codes to decide whether a …

 jX instruction (conditional jump) is to be exectued or a

 cmovX instruction (conditional move) is to be exectued

 2 loop patterns:

 “coding the false condition first” -> while loops (hence for loops)

 “jump-in-middle” -> while, do-while (hence for loops)

cmp* and test*

instructions set

condition codes

Compiler can

produce different

instruction

combinations when

assembling the

same C code.

2

Question about while loop:

in assembly: # x in %edi, y in %esi

loop:

cmpl %edi, %esi

jl endloop

stmts

jmp loop

endloop:

ret

in C:

while (x < y) {

// stmts

}

loop:

if cond false

goto done:

stmts

goto loop:

done:

Loop Pattern 1

Would this assembly code be

the equivalent of our C code?
3

Demo: alternative way of implementing
if/else in assembly language

 ifelse.c and ifelse.s

posted on our course web site

4

Today’s Menu

 Introduction

 C program -> assembly code -> machine level code

 Assembly language basics: data, move operation

 Memory addressing modes

 Operation leaq and Arithmetic & logical operations

 Conditional Statement – Condition Code + cmovX

 Loops

 Function call – Stack

 Overview of Function Call

 Memory Layout and Stack - x86-64 instructions and registers

 Passing control

 Passing data – Calling Conventions

 Managing local data

 Recursion

 Array

 Buffer Overflow

 Floating-point operations
5

What happens when a function (caller)

calls another function (callee)?

1. Control is passed (i.e., program counter PC is set)…

 To the beginning of the code in callee function

 Back to where callee function was called in
caller function

2. Data is passed …

 To callee function via function parameter(s)

 Back to caller function via return value

3. Memory is …

 Allocated when callee function starts executing

 Deallocated when callee function stops executing

 Above mechanisms implemented with machine code instructions

and described as a set of conventions (which is part of ISA)

void who(…) {

int sum = 0;

...

y = amI(x);

sum = x + y;

return;

}

int amI(int i)

{

int t = 3*i;

int v[10];

...

return v[t];

}

6

Remember from Lecture 2:

Closer look at memory

 Seen as a linear (contiguous)

array of bytes

 1 byte (8 bits) smallest

addressable unit of memory

 Each byte has a unique address

 Byte-addressable memory

Computer reads a word worth of

bits at a time (=> word size)

Compressed view of memory

7

Memory Layout

 Stack

 Runtime stack, e. g., local variables

 Heap

 Dynamically allocated as needed, explicitly released
(freed)

 When call malloc(), free(), new(), delete[], ...

 Data

 Statically allocated data, e.g., global vars, static vars, string
constants

 Text

 Executable machine instructions

 Read-only

 Shared Libraries

 Executable machine instructions

 Read-only

0x00007FFFFFFFFFFF Stack

Text
Data

Heap

0x0000000000400000

Shared
Libraries

0x0000000000000000

M[]

segments

Kernel

8

9

#include ...

char hugeArray[1 << 31]; /* 231 = 2GB */

int global = 0;

int useless(){ return 0; }

int main ()

{

void *ptr1, *ptr2;

int local = 0;

ptr1 = malloc(1 << 28); /* 228 = 256 MB*/

ptr2 = malloc(1 << 8); /* 28 = 256 B*/

/* Some print statements ... */

}

Where

does

everything

go?

Memory Allocation Example

9

Stack

Text
Data

Heap

Shared
Libraries

M[]

Kernel

Closer look at function call pattern

 A function may call a function, which may

call a function, which may call a function, …

When a function (callee) terminates and returns, its most

recent caller resumes which eventually terminates and

returns and its most recent caller resumes …

 Does this pattern remind you of anything?

who(…) {

...

...

are();

...

...

}

are(…) {

...

you();

...

you();

...

}

you(…) {

...

...

...

...

...

}

Some

segment

in M[]

10

Stack - Review

Definition:

A stack is a last-in-first-out (LIFO) data

structure with two characteristic

operations:

 push(data)

 data = pop() or pop(&data)

Do not have access to anything

except what is on (at) top

Source: https://www.thebroad.org/art/

robert-therrien/no-title-8

11

Summary

 Function call mechanisms: 1) passing control, 2) passing data, 3)

managing local data on the stack

 Memory layout

 Stack (local variables …)

 Heap (dynamically allocated data)

 Data (statically allocated data)

 Text / Shared Libraries (program code)

 A “stack” is the right data structure for function call / return

12

Next Lecture

 Introduction

 C program -> assembly code -> machine level code

 Assembly language basics: data, move operation

 Memory addressing modes

 Operation leaq and Arithmetic & logical operations

 Conditional Statement – Condition Code + cmovX

 Loops

 Function call – Stack

 Overview of Function Call

 Memory Layout and Stack - x86-64 instructions and registers

 Passing control

 Passing data – Calling Conventions

 Managing local data

 Recursion

 Array

 Buffer Overflow

 Floating-point operations
13

