CMPT 295

Unit - Machine-Level Programming

Lecture 13 — Assembly language — Program Control — emovX
Iterative Statements — Loops

Last Lecture

» |n C, we can change the execution flow of a program

1. Conditionaly
» Condifional statements: if/else, switch
®» [teratfive statements: loops

2. Unconditionally
= Functions calls

» |n X86-64 assembly, we can also change the execution flow of a program
®» cmp* instruction (compare)
» 45X instructions (jump)

®»ca]1] and ret instructions

Today's Menu

- cmovX

Homework: int max (int x, int v)

version 1 —with jX instruction

In C:
int max(int x, int y) {
int result = x;
if (y > x)
result = y;

return result;

In Assembly: # xin %edi, y in %esi, result in %eax
max:

movl %edi, %eax # result = x

cmpl %edi, %$esi # if y <= x then

jle endif # return

movl %$esi, %eax # result =y
endif:

ret

We branch (jump) when the condition (y > x) is false, i.e., when (y <= x)
-> This fechnique is called “coding the false condition first”

or "taking care of ..."”

Conditional move instruction emovX

What C code looks like What logic of assembly
when using conditional code looks like when using
operator: cmovX (expressedin C):

result = test ? val2 : wvall;||result = wvall;

return result;

i1f (test) result = wval2;
return result;

®» Fxample: emovle

Src, Dest alternative: int abs (int x)

in C:
int abs(int x) {
if ((x < 0)
X = -X;

return x;

in assembly:

x in %edi, result in %eax
abs:

I
%

movl %edi, %eax # result

negl %edi # x = -x
cmpl $0, %eax # if x < 0 then
cmovl %edi, %eax # result = -x

ret

Advantage of conditional move emovX

Note about branching:

» Branches are very disruptive to instruction flow through
microprocessor CPU pipelines

» However, since conditional moves (emovX) do nof

require conftrol transfer (no branching/jumping required),
they are less disruptive

» S0, gce fries to use them, but only when safe

What do we mean by “safe’”¢

» |n |[result = test ? aVal : anotherVal; | poth values

(aval and anotherVval) are computed so their
computation must be “safe”

®» Fxample of unsafe computations:

1. Expensive computations |val = Test(x) ? Hardl(x) : Hard2(x);

» Only makes sense when computations are very simple
2. Risky computations |val = p ? *p : 0;

» Only makes sense when computations do not crash the
application

3. Computations with side effects |[val = x > 0 ? x*=7 : x+=3;
» Only makes sense when computations do not have side effects

Homework:

Example: alternate int max (int x, int vy)

version 2 — with emovX instruction

In C:
int max(int x, int y) {
int result = x;
if (y > x)
result = y;

return result;

In Assembly: # xin %edi, y in %esi, result in %eax
max:
movl %edi, %$eax # result = x
cmpl %edi, %esi # if y > x then
cmovg %esi, %$eax # result =y

ret

While loop - “coding the false condition first”

int xand int y are arguments to function

in C:
while (x < y) {
// stmts

}

return;

iINn assembly:
loop:

endloop:

ret

Loop Pattern 1

loop:
1f cond false
goto done:
stmts
goto loop:
done:

While loop — "jump-to-middle”

int xand int y are arguments to function

in C: in assembly:

while (x < y) { Loop Pattern 2

// stmts loop: goto test:
} # stmts Loop:
stmts
return; test: test:
1f cond true
goto loop:
done:

ret

Do While loop - Yjump-to-middle”

int xand int y are arguments to function

in C: iIn assembly:
do { Loop Pattern 2
stmts loop: goteo—test:
! loop:
while (x < ; stmts
} (y) # stmts
return; test: test:
if cond true
goto loop:
done:

ret

For loop

In C:
initjalization, increment
for (1 =Eﬁ; i< n; i++){

condition

// stmts testing
}

return;

i =20; // initialization

while (i < n) { //conditior

// stmts teStlng

i++; // increment

}

return;

(=4

In Assembly:
xorl %ecx, %ecx
loop:
cmpl %edi, %ecx
jge endloop

stmts
incl %ecx
jmp loop
endloop:

ret

H = F = H=

initialization

%ecx (i) <- O

while i < n true
testing

jump when i >= n

false condition

i++ increment

loop again

Compiler can S umma ry

produce different
instruction

Cocnggr]r?gl?nng; J\rfgl’elen ®» [N x86-64 assembly, there are no conditional statements, however,

same C code. we can alter the execution flow of a program by using ...
® cmp* instruction (compare)

®» X instructions (jump)

® call and ret instructions

= cmovX instructions -> conditional move

» |n x86-64 assembly, there are no iterative statements, however, we
can alter the execution flow of a program by using ...

® cmp* insfruction
» X instructions (jump)

cmp* and test* | ®» CPU uses these condition codes 1o decide whether a ...
instructions set

condition codes

® jX instruction (conditional jump) is to be exectued or a
® cmovX instruction (conditional move) is to be exectued
») |oop patterns:
» “coding the false condition first” -> while loops (hence for l0ops)
®» “ijump-in-middle” -> while, do-while (hence for loops)

13

Next Lecture

»
»
»
»
»
»
»
= Function call - Stack
= QOverview of Function Call
= Memory Layout and Stack - x86-64 instructions and registers
= Passing control
»
»
»
»

