
1

CMPT 295
Unit - Machine-Level Programming

Lecture 12 – Assembly language – Program Control –

Conditional Statements

Last Lecture

 Demo

Observation: C compiler will figure out different instruction

combinations to carry out the computations in our C code

2

Today’s Menu

 Introduction

C program -> assembly code -> machine level code

 Assembly language basics: data, move operation

Memory addressing modes

 Operation leaq and Arithmetic & logical operations

 Conditional Statement – Condition Code + cmovX

 Loops

 Function call – Stack

 Array

 Buffer Overflow

 Floating-point operations
3

Completing our Demo

1. gcc uses leaq for addition -> sum_store.c

2. Writing our own assembly code (arith.s) using arithmetic

instructions of x86-64 assembly language

3. makefile

 when we compile our own *.s files with *.c files

 when we compile only *.c files

4. How would gcc compile our arith.c into arith.s?



4



Program Control Overview

We can change the execution flow of a program

1. Based on a condition

2. Unconditionally

Control statements

if/else

switch

for loop

while and do while loops

 function calls

in C

Branching:

 cmp* instruction (compare)

 jX instructions (jump)

call and ret

in x86-64 assembly

Conditional

statements

Iterative

statements

5

Conditional statement: if/else

We branch (jump) when the condition is false

-> This technique is called “coding the false condition first”

in C:

void func(long x,long y){

if (x < y) {

// stmts true

} else {

// stmts false

}

return;

}

in assembly:

func:

cmpq %rsi,%rdi # x – y

jge else #

... # stmts true

jmp endif #

else: ... # stmts false

endif: ret #

6

label
label

A is

a memory

address

label

comparison instructions

* -> Size designator

q -> long 64

l -> int 32

w -> short 16

b -> char 8

Syntax Meaning/Effect Example

cmp* Src2, Src1 Src1 – Src2 -> > 0? -> Src1 > Src2 cmpq %rsi,%rdi

= 0? -> Src1 == Src2

< 0? -> Src1 < Src2

without saving the result in the destination operand (no Dest)

 Sets condition codes based on value of Src1 – Src2

test* Src2, Src1 Src1 & Src2 -> testq %rax,%rax

without saving the result in the destination operand (no Dest)

Sets condition codes based on value of Src1 & Src2

Useful when one of the operands is a bit mask7

Remember in Lecture 9, we saw …

jX jump family instructions (branching)

 Jump to different part of

the program depending

on result of previous

instructions

(i.e., condition codes)

jX Description
jmp Unconditional

je Equal / Zero

jne Not Equal / Not Zero

js Negative

jns Nonnegative

jg Greater (Signed)

jge Greater or Equal

(Signed)

jl Less (Signed)

jle Less or Equal (Signed)

ja Above (unsigned)

jb Below (unsigned)8

Example – int abs(int x)

in C:

int abs(int x){

if (x < 0)

x = -x;

return x;

}

in assembly:

x in edi, result in eax

abs:

movl %edi, %eax # eax <- x

#

ret if x >= 0

x = -x

endif:

ret

9

int max(int x, int y)- Homework

11

in C:

int max(int x, int y){

int result = x;

if (y > x)

result = y;

return result;

}

in assembly:

x in edi, y in esi, result in eax

max:

movl %edi, %eax # result = x

endif:

ret

Carnegie Mellon

Summary

 In C, we can change the execution flow of a program

1. Conditionaly

 Conditional statements: if/else, switch

 Iterative statements: loops

2. Unconditionally

 Functions calls

 In x86-64 assembly, we can also change the execution flow of a

program

 cmp* instruction (compare)

 jX instructions (jump)

 call and ret instructions

11

Next Lecture

13

 Introduction

C program -> assembly code -> machine level code

 Assembly language basics: data, move operation

Memory addressing modes

 Operation leaq and Arithmetic & logical operations

 Conditional Statement – Condition Code + cmovX

 Loops

 Function call – Stack

 Array

 Buffer Overflow

 Floating-point operations

