CMPT 295

Unit - Machine-Level Programming

Lecture 12 — Assembly language — Program Control —
Conditional Statements

Last Lecture

» Demo

= Observation: C compiler will figure out different instruction
combinations to carry out the computations in our C code

Today's Menu

» Conditional Statement — Condition Code

Completing our Demo

\/l . gcc uses leaqg for addition -> sum store.c

\/2. Writing our own assembly code (arith.s) using arithmetic
Instructions of x86-64 assembly language

3. makefile
» when we compile our own *.s files with *.c files

» when we compile only *.c files

4. How would gcc compile our arith.cinfo arith.s@?

Program Control Overview

» We can change the execution flow of a program
1. Based on a condition
2. Unconditionally

in C iNn x86-64 assembly
= Confrol statements
Conditional)| ™if/else -~ Branching:
statements | w switch = cmp* instruction (compare)
lterative {- for loop = jX instructions (jump)
statements ® while and do while loOps]

» function calls > call and ret

Conditional statement: if/else

in C: IN assembply:
void func(long x,long y) { func:
if (x <y) { / cmpg %$rsi,%rdi # x - y
// stmts true / jge else #
} else { 19bel label [# stuts true
// stmts false X\ jmp endif #
} \flse: .. # stmts false
return; endif: ret #
}
N label Iis We branch (jump) when the condition is false
4 a memory -> This technique is called “coding the false condition first”
address

* -> Size designator

Remember in Lecture 9, we saw ...

Programming in x86-64 assembly

= . with assembly language (and machine code), parts of
[the microprocessor state are visible to assembly
programmers that normally are hidden from C programmers

= As assembly programmers, we now have access fo ...

ggggg
Registers
‘ Data

| Condition " e

<~ =eas | cOmpArison instructions
|
Syntax Meaning/Effect

cmp* Src2, Srcl

Srcl - Src2 -> > 0? -> Srcl > Src2

= 0? -> Srcl == Src2

< 0? -> Srecl < Src2

without saving the result in the destination operand (no Dest)

» Sets condition codes based on value of Srel - Src2

test* Src2, Srcl

Srcl & Src2 ->

without saving the result in the destination operand (no Dest)

» Sets condition codes based on value of Srecl & Src2

= Useful when one of the operands is a bit mask

Example

cmpg %rsi, srdi

testg %rax, srax

IX Jump family instructions (branching)

» Jump to different part of JX Description
the program depending jmp Unconditional
on result of previous je Equal / Zero
Instructions jne Not Equal / Not Zero
(i.e., condition codes) js Negative
jns Nonnegative
Jg Greater (Signed)
jge Greater or Equal
(Signed)
Jl Less (Signed)
jle Less or Equal (Signed)
ja Above (unsigned)
8 b Below (unsigned)

Example — int abs (int x)

in C:

int abs(int x) {
if (x < 0)
X = -X;

return x;

iINn assembly:
x in edi, result in eax
abs:
movl %edi, %eax # eax <- x
#
ret if x >= 0
¥ x = -x
endif:

ret

int max (int x, 1int y)- Homework

in C: IN assembly:
int max(int x, int y){ # xin edi, y in esi, resulf in eax

: max:
int result = x; a

if (y > x) movl %edi, %eax # result = x

result = y;

return result;

endif:

ret

Summary

» |n C, we can change the execution flow of a program

1. Conditionaly
= Condifional statements: if/else, switch
» |ferative statements: loops

2. Unconditionally
» Functions calls

» |n x86-64 assembly, we can also change the execution flow of a
program

» cmp* instruction (compare)
= 5% instructions (jump)

®»call and ret instructions

Next Lecture

- CmovX

