
1

CMPT 295
Unit - Machine-Level Programming

Lecture 11 – Assembly language basics: Practice and DEMO 
-> leaq and arithmetic & logical instructions and 

memory addressing modes



Why did the programmer quit their job?

A never got arrays!

2



Summary

 leaq - load effective address instruction

 Using data as operand to an instruction:

Immediate (constant integral value)

Register (16 registers)

Memory (various memory addressing modes)

General Syntax:  Imm(rb, ri, s)

 Arithmetic & logical operations

Arithmetic instructions:  add*, sub*, imul* inc*, dec*, 

neg*, not*

Logical instructions: and*, or*, xor*

Shift instructions: sal*, sar*, shr*

3



Today’s Menu

Practice

and

DEMO!

 Introduction

C program -> assembly code -> machine level code

 Assembly language basics: data, move operation

Memory addressing modes

 Operation leaq and Arithmetic & logical operations

 Conditional Statement – Condition Code + cmov*

 Loops

 Function call – Stack

 Array

 Buffer Overflow

 Floating-point operations

4



Demo

1. gcc uses leaq for addition -> sum_store.c

2. Writing our own assembly code (arith.s) using arithmetic

instructions of x86-64 assembly language

3. makefile

 when we compile our own *.s files with *.c files

 when we compile only *.c files

4. How would gcc compile our arith.c into arith.s?

5



Summary

 Demo

Observation: C compiler will figure out different instruction 

combinations to carry out the computations in our C code

6



Next lecture

 Introduction

C program -> assembly code -> machine level code

 Assembly language basics: data, move operation

Memory addressing modes

 Operation leaq and Arithmetic & logical operations

 Conditional Statement – Condition Code + cmov*

 Loops

 Function call – Stack

 Array

 Buffer Overflow

 Floating-point operations

7


