
1

CMPT 295
Unit - Machine-Level Programming

Lecture 10 – Assembly language basics: leaq instruction,

memory addressing modes and

arithmetic & logical operations

Last Lecture

 As x86-64 assembly s/w dev., we now get to see more of the microprocessor

(CPU) state: PC, registers, condition codes

 x86-64 assembly language – Data

 16 integer registers of 1, 2, 4 or 8 bytes + memory address of 8 bytes

 Floating point registers of 4 or 8 bytes

 No aggregate types such as arrays or structures

 x86-64 assembly language – Instructions

 mov* instruction family

From register to register

From memory to register

From register to memory

 Memory addressing modes

 Cannot do memory-memory transfer with a single mov* instruction2

Why cannot do memory-memory transfer
with a single mov* instruction?

 No x86-64 assembly instructions that take 2 memory addresses as
operands

 Such instruction would

 Makes for very long machine instructions

 Require more complex decoder unit (on microprocessor)
in other words, require more complex microprocessor datapath

 Memory only has one data bus and one address bus

No appetite for instruction set architects to create such instructions

 Registers very fast and can easily be used for such transfer

 More info here:

https://stackoverflow.com/questions/33794169/why-isnt-movl-from-
memory-to-memory-allowed

3

https://stackoverflow.com/questions/33794169/why-isnt-movl-from-memory-to-memory-allowed

Last Lecture

 Requirement: When reading/writing assembly code …

4

swap:

xp -> %rdi, yp -> %rsi

movq (%rdi), %rax # L1 = *xp

movq (%rsi), %rdx # L2 = *yp

movq %rdx, (%rdi) # *xp = L2

movq %rax, (%rsi) # *yp = L1

ret

… add a comment

at the top of your

function in your

assembly code

describing the

parameter-to-

register mapping

Comment each

of your assembly

language

instruction by

explaining what it

does using

corresponding C

statement or

pseudocode

Today’s Menu

5

 Introduction

C program -> assembly code -> machine level code

 Assembly language basics: data, move operation

Memory addressing modes

 Operation leaq and Arithmetic & logical operations

 Conditional Statement – Condition Code + cmov*

 Loops

 Function call – Stack

 Array

 Buffer Overflow

 Floating-point operations

Various types of operands to x86-64

instructions

1. Integer value as operand directly in an instruction

 This operand is called immediate

Operand syntax: Imm

Examples: movq $0x4,%rax and movb $-17,%al

2. Registers as operands in an instruction

Operand value: R[ra]

Operand syntax: %ra

Example: movq %rax,%rdx

3. Memory address – using various memory addressing
modes as operands in an instruction

name of particular register

6

These instructions

copy immediate

value to registerSo far, this is

the type of

operands what

we have seen!

This instruction

copies the

value of one

register into

another register

Memory addressing modes

We access memory in an x86-64 instruction by expressing a

memory address through various memory addressing modes

1. Absolute memory addressing mode

Use memory address as operand directly in instruction

The operand is also called immediate

Operand syntax: Imm

Effect: M[Imm]

Example: call plus

2. Indirect memory addressing mode
7

plus refers to the

memory address

of the first byte of

the first instruction

of the function
called plus (see

Demo)

2. Indirect memory addressing mode

When a register contains an address

Similar to a pointer in C

 To access the data at the address contained in the
register, we use parentheses (…)

General Syntax: (rb)

 Effect: M[R[rb]]

8

2. Indirect memory addressing mode

memory to registerregister to register

9

Carnegie Mellon

leaq - Load effective address instruction

 Often used for address computations and general arithmetic

computations

 Syntax: leaq Source, Destination

 Example:

1. Computing addresses if %rax <- 0x0000000000000008

and %rcx <- 16

leaq (%rax, %rcx), %rdx

2. Computing arithmetic expressions of the form x + k*y where k
∈ {1,2,4,8} if %rdi <- variable a

leaq (%rdi, %rdi, 2), %rax

 Operand Destination is a register

 Operand Source is a memory addressing mode expression

x ky Once executed,

rax will contain 3a

C code:

return a*3;

Once executed,

rdx will contain 0x18

leaq has the form of

an instruction that

reads from memory to

a register (because of

the parentheses),

however it ***does

not*** reference

memory at all!

10

3. “Base + displacement”
memory addressing mode

General Syntax: Imm(rb)

 Effect: M[Imm + R[rb]]

 Examples: movq %rax, -8(%rsp)

leaq 7(%rdi), %rax

Careful here!

When dealing with leaq, the effect is Imm + R[rb]

not M[Imm + R[rb]]

11

4. Indexed memory addressing mode

1. General Syntax: (rb,ri)

 Effect: M[R[rb] + R[ri]]

 Example: movb (%rdi, %rcx), %al

2. General Syntax: Imm(rb,ri)

 Effect: M[Imm + R[rb] + R[ri]]

 Example: movw 0xA(%rdi, %rcx), %r11w

Careful here!

 When dealing with leaq, the effect is

1. R[rb] + R[ri] ***not*** M[R[rb] + R[ri]]

2. Imm + R[rb] + R[ri] ***not*** M[Imm + R[rb] + R[ri]]

12

5. Scaled indexed memory addressing mode

1. General Syntax: (,ri,s) Effect: M[R[ri] * s]

Example: (, %rdi, 2)

2. General Syntax: Imm(,ri,s) Effect: M[Imm + R[ri] * s]

Example: 3(, %rcx, 8)

3. General Syntax: (rb,ri,s) Effect: M[R[rb] + R[ri] * s]

Example: (%rdi, %rsi, 4)

4. General Syntax: Imm(rb,ri,s) Effect: M[Imm + R[rb] + R[ri] * s]

Example: 8(%rdi, %rsi, 4)

Again, careful here!

 When dealing with leaq, the effect is ***not*** to reference memory at all!
13

Summary - Memory addressing modes

1. Absolute

2. Indirect

3. “Base + displacement”

4. 2 indexed

5. 4 scaled indexed

See Table of x86-64 Addressing Modes

on Resources web page of our course web site

General Syntax: Imm(rb, ri, s)

Effect: M[Imm + R[rb]+ R[ri] * s]

14

We access memory in an x86-64 instruction by expressing a

memory address through various memory addressing modes

http://www.cs.sfu.ca/CourseCentral/295/alavergn/Resources/Table%20of%20x86-64%20Addressing%20Modes.html

Carnegie Mellon

Let’s try it!

Expression Address Computation Address

8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

0x80(%rdx, 2)

0x80(,%rdx, 3)

%rdx 0xf000

%rcx 0x0100

15

Carnegie Mellon

Two-Operand Arithmetic Instructions

Syntax Meaning Examples in C

add* Src, Dest Dest ← Dest + Src addq %rax, %rcx x += y

sub* Src, Dest Dest ← Dest – Src subq %rax, %rcx x -= y

imul* Src, Dest Dest ← Dest * Src imulq $16,(%rax,%rdx,8)

x *= y

 “destination” and “first operand” are the same

 “2 operand” assembly language (machine)

mem ← mem OP mem usually not supported

 2 assembly code formats: ATT and Intel format (see Aside in Section 3.2 P. 177)

We are using the ATT format

 Both order the operands of their instructions differently - Watch out!

16

* -> Size designator

q -> long 64

l -> int 32

w -> short 16

b -> char 8

Carnegie Mellon

Two-Operand Logical Instructions

Syntax Meaning Examples

and* Src, Dest Dest ← Dest & Src andl $252645135, %edi

or* Src, Dest Dest ← Dest | Src orq %rsi, %rdi

xor* Src, Dest Dest ← Dest ^ Src xorq %rsi, %rdi

 xorq special purpose:

 xorq %rax, %rax <- zeroes register %rax

 movq $0, %rax <- also zeroes register %rax

 x86-64 convention:

 Any instruction updating the lower 4 bytes will cause the higher-order

bytes to be set to 0

 xorl %eax, %eax and movl $0, %eax <- also zeroes register %rax
17

* -> Size designator

q -> long 64

l -> int 32

w -> short 16

b -> char 8

Carnegie Mellon

Two-Operand Shift Instructions

Syntax Meaning Examples

sal* Src, Dest Dest ← Dest << Src salq $4, %rax

 Left shift - also called shlq: filling Dest with 0, from the right

sar* Src, Dest Dest ← Dest >> Src sarl %cl, %rax

 Right arithmetic Shift: filling Dest with sign bit, from the left

shr* Src, Dest Dest ← Dest >> Src shrq $2, %r8

 Right logical Shift: filling Dest with 0, from the left
18

* -> Size designator

q -> long 64

l -> int 32

w -> short 16

b -> char 8

Carnegie Mellon

One-Operand Arithmetic Instructions

Syntax Meaning Examples

inc* Dest Dest ← Dest + 1 incq (%rsp)

dec* Dest Dest ← Dest  1 decq %rsi

neg* Dest Dest ← Dest negl %eax

not* Dest Dest ← ~Dest notq %rdi

19

* -> Size designator

q -> long 64

l -> int 32

w -> short 16

b -> char 8

Summary

 leaq - load effective address instruction

 Various types of operands to x86-64 instructions

 Immediate (constant integral value)

Register (16 registers)

Memory address (various memory addressing modes)

General Syntax: Imm(rb, ri, s)

 Arithmetic & logical operations

Arithmetic instructions: add*, sub*, imul* inc*, dec*,

neg*, not*

Logical instructions: and*, or*, xor*

Shift instructions: sal*, sar*, shr*
20

Next lecture

Practice

and

DEMO!

21

 Introduction

C program -> assembly code -> machine level code

 Assembly language basics: data, move operation

Memory addressing modes

 Operation leaq and Arithmetic & logical operations

 Conditional Statement – Condition Code + cmov*

 Loops

 Function call – Stack

 Array

 Buffer Overflow

 Floating-point operations

