CMPT 295

Unit - Machine-Level Programming

Lecture 10 — Assembly language basics: 1eaqg instruction,

memory addressing modes and
arithmetic & logical operations

Last Lecture

» As x86-64 assembly s/w dev., we now get to see more of the microprocessor
(CPU) state: PC, registers, condition codes

» x86-64 assembly language - Data
» 16 intfeger reqisters of 1, 2, 4 or 8 bytes + memory address of 8 bytes

» Floating point registers of 4 or 8 bytes
= No aggregate types such as arrays or structures

» x86-64 assembly language - Instructions
= mov* instruction family
= From register to register
= From memory to register
= From register to memory
= Memory addressing modes
2 » Cannot do memory-memory transfer with a single mov* instruction

Why cannof do memory-memory fransfer
with a single mov* instructione

= No x86-64 assembly instructions that take 2 memory addresses as
operands

= Such instruction would
= Makes for very long machine instructions

= Require more complex decoder unit (on microprocessor)
in other words, require more complex microprocessor datapath

=» Memory only has one data bus and one address bus
— No appetite for instfruction set architects to create such instructions
— Registers very fast and can easily be used for such transfer

= More info here:

hitps://stackoverflow.com/questions/33794169/why-isnt-movl-from-
memory-to-memory-allowed

https://stackoverflow.com/questions/33794169/why-isnt-movl-from-memory-to-memory-allowed

..add a commen’r\\

at the top of your
function in your
assembly code
describing the
parameter-to-

Kregis’rer mapping /

Last Lecture

®» Requirement: When reading/writing assembly code ...

e

swap :

:;7# xp -> %rdi, yp -> %rsi
movq ($rdi), S$rax #
movq ($rsi), S$rdx #
movq $rdx, (%rdl) it
movq Srax, (%rsi) #
ret

Comment each \
of your assembly
language
instruction by
explaining what it
does using
corresponding C
statement or

Qseudocode

/

Today's Menu

= Memory addressing modes

Operation 1leag and Arithmetic & logical operations

Various types of operands to x86-64
Instructions

1. Intfeger value as operand directly in an instruction

» This operand is called immediate These instructions
= O d Fax: copy immediate
So far, this is perand syntax. Imm value to register
the type of » Examples: movg $0x4,%rax and movb $-17,%al
operands what
we have seen! 2. Registers as operands in an insfruction
=» Operand value: R[r,] This instruction)
» QO d tax: & : . copies the
perand syntax: %r, === name of particular register | yqiue of one
» Example: movg %$rax, $rdx register info

. . —\ another register
3. Memory address — using various memory addressmg

modes as operands in an instfruction

Memory addressing modes

We access memory in an x86-64 instruction by expressing a
memory address through various memory addressing modes

1. Absolute memory addressing mode

» Use memory address as operand directly in instruction

»The operand is also called immediate /plus ofers 1o ’rhe\

®» Operand syntax: Imm memory address

of the first byte of
the first instruction

» Example: call plus of the function
called plus (see
2. Indirect memory addressing mode Demo) Y,
7

» Effect: M[Imm]

2. Indirect memory addressing mode

» When a register contains an address
= Similar to a pointerin C

» To access the data at the address contained in the
register, we use parentheses (...)

» General Syntax: (ry)
» Fffect: M[R[x,]]

2. Indirect memory addressing mode

reaister to reaister memoryv to reaister
= Example: movg %$rdx,%rax VS movg (%rdx),%rax
Meaning or effect: rax <- rdx VS rax <- M[rdx]
orr R[rax] <- R[rdx] R[rax] <- M[R[xrdx]]
Before After Before After
$rax = 15 $rax = 6 $rax = 15 $rax = 11
$rdx = 6 $rdx = 6 srdx = 6 srdx = 6
not used M[6] = 11 M[e] = 11 M[6] = 11 M[e] = 11

= Ofher examples: movg %rax, ($xdx) <-register fo memory
movg $-147, (%$rax) <-immediate to memory

leaqghas the form of\
an instruction that . . .
eads frommemoryto|] eg g - LOoad effective address instruction
a register (because of
the parentheses), . . .
however it **does |™ Often used for address computations and general arithmetic
not*** reference computations

memory at all! /

» Syntax: leaq Source, Destination

®» Example:

1. Computing addresses if %$rax <- 0x0000000000000008

and %rcx <- 16
Once executed,
rdx will contain 0x18

2. Computing arithmetic expressions of the form x + k*y where k

leaq (%rax, %rcx), Srdx

€ {1,2,4,8} if $rdi <- variable a
C code: X y k Once executed
* 3. % 1 o 1) ’
return a*3; leaqg (%rdi, %rdi, 2), Srax rax will contain 3a

» Operand Destination IS A reqister
®» Operand Source is O memory addressing mode expression

3. "Base + displacement”
memory addressing mode

» General Syntax: Imm(xr,)
» Fffect: M[Imm + R[r.]]
®» Examples: movg %$rax, -8 (%rsp)

leaqg 7(%rdi), Srax
» Careful herel
» When deadling with 1eaq, the effectis Imm + R[r,]

FNOT™* M[Imm + R[r.]]

4. Indexed memory addressing mode

1. General Syntax: (x,,r;)
» Fffect: M[R[r,] + R[r,]]
®» Example: movb (%rdi, %rcx), %al

2. General Syntax: Imm(xr,, x.)
» Fffect: M[Imm + R[r,] + R[r,]]
» Example: movw OxA (%$rdi, %rcx), %rllw

Careful herel
» When dealing with 1eaq, the effect is
19 1. R[r,] + R[r;] " not™ M[R[r,] + R[r;]]
2. Imm + R[r,] + R[r;] ™nof™* M[Imm + R[r,] + R[r,]]

5. Scaled indexed memory addressing mode

1. General Syntax: (,r;,s) Effect: M[R[r.,] * s]
®» Example: (, %rdi, 2)

2. General Syntax: Imm(,r.,s) Effect: M[Imm + R[r;] * s]
» Example: 3(, %rcx, 8)

3. General Syntax: (r,, r;,s) Effect: M[R[r,] + R[r;] * s]
®» Example: (%$rdi, %rsi, 4)
4. General Syntox: Imm(r,,r;,s) Effect:M[Imm + R[r,] + R[r,] * s]

®» Example: 8 (%$rdi, %rsi, 4)

13 Again, careful herel
\ » When dealing with 1leaq, the effect is ***not*** to reference memory at all!

Summary - Memory addressing modes

We access memory in an x86-64 instruction by expressing a
memory address through various memory addressing modes

1. Absolute

2. Indirect General Syntaox: Imm(r,, r;, s)

3. “Base + displacement” Effect: M[Imm + R[r]+ R[r,] * s]
4. 2 indexed

5. 4 scaled indexed

See Table of x86-64 Addressing Modes
14 on Resources web page of our course web site

http://www.cs.sfu.ca/CourseCentral/295/alavergn/Resources/Table%20of%20x86-64%20Addressing%20Modes.html

Let’s try it

$rdx |0x£f000
$srex |[0x0100

Expression Address Computation | Address

8 ($rdx)

Srdx, srcx)

srdx,%srcx,4)

0x80 (, $rdx, 2)

0x80 (3rdx, 2)

s 0x80 (,%rdx, 3)

* -> Size designator

d
1

w
b

->
->
->
->

long 64
int 32
short 16

char 8

Two-Operand Arithmetic Instructions

Syntax
add* Src,

sub* Src,

imul* Src,

Meaning Examples inC
Dest Dest «— Dest + Src addg %rax, %srcx X +=y
Dest Dest «— Dest - Src subg %Srax, %rcx X —-=Yy
Dest Dest «— Dest * Src imulg $16, (%$rax, %$rdx, 8)
X *= vy

16

» “destination” and "first operand’ are the same
» "2 operand” assembly language (machine)

®» mem — mem OP mem usudlly not supported
» 7 assembly code formats: ATT and Intel format (see Aside in section3.2P. 177)

= We are using the ATT format
» Both order the operands of their instructions differently - Watch out!

e Two-Operand Logical Instructions

2 > char S Byntax Meaning Examples
and* Src, Dest Dest «— Dest & Src andl $252645135, %edi
or* Src, Dest Dest «— Dest | Src orq %rsi, 3rdi
xor* Src, Dest Dest «— Dest #* Src Xorq %rsi, 3rdi

» xorqg special purpose:

® xorq %rax, %rax <- zeroesregister $rax

® movg $0, $Srax <- qlsozeroesregister $rax

» x86-64 convention:

= Any instruction updating the lower 4 bytes will cause the higher-order
bytes to be set 1o 0

®» xorl %eax, %eax and movl $0, %eax <- AlsO zeroesregister $rax

1

* -> Size designator

o = H Q

vV V. V V

long 64
int 32
short 16

char 8

Two-Operand Shift Instructions

Syntax Meaning Examples

sal* Src, Dest Dest <« Dest << Src salg $4, %rax

» | eff shift - also called shlgq: filling Dest with O, from the right

sar* Src, Dest Dest «— Dest >> Src sarl %cl, Srax

= Right arithmetic Shiff: filling Dest with sign bit, from the left

shr* Src, Dest Dest «— Dest >> Src shrqg $2, %r8

= Right logical Shiff: filling Dest with O, from the left

* -> Size designator

qg -> long 64
1 -> int 32

w > short 1s One-Operand Arithmetic Instructions

b -> char 8

Syntax Meaning Examples
inc* Dest Dest «— Dest + 1 incq (3rsp)
dec* Dest Dest «— Dest - 1 decq %rsi
neg* Dest Dest < —Dest negl %eax

not* Dest Dest <« ~Dest notq %rdi

Summary

® leaqg - load effective address instruction
® Various types of operands to x86-64 instructions

» |mmediate (constant integral value)
» Register (16 registers)

» Memory address (various memory addressing modes)
»(General Synfax: Imm(r,, r

s)

i7r
» Arithmetic & logical operations
» Arithmetic instructions: add*, sub*, imul* inc*, dec¥*,
neg*, not¥*

20 = | ogical instructions: and*, or*, xor*

® Shift instfructions: sal*, sar*, shr*

Next lecture

»
-
-
= Memory addressing modes Practice
» Operation leag and Arithmetic & logical operations } DEIC\%!

A

