CMPT 295

Unit - Machine-Level Programming
Lecture 9 — Assembly language basics: Data, move operation

Last Lecture

» Review: von Neumann architecture
» Data and code are both stored in memory during program execution

1. Question: How does our C program end up being represented as a
series of O's and 1's (i.e., as machine code)?

» Compiler: C program -> assembly code -> machine level code

» gcc: 1) C preprocessor, 2) C compiler, 3) assembler, 4) linker

Question: How does our C program (once it is represented as a series of
0's and 1's) end up being stored in memory? | oadew

» When C program is executed (e.g. from ourdemo: ./ss 5 6)

3. Question: How does our C program (once it is represented as a series of
O's and 1's and it is stored in memory) end up being executed by the
microprocessor (CPU)?

» CPU executes C program by looping through the fetch-execute cycle

Summa
The Big Picture

C program (.c)

Preprocessed Source

— sum store.c

— sum store.1l

- 1abl

C Preprocessor

'y - Turning C intfo machine level code - gcc

gcc —-E sum store.c > sum store.i

Expands the header(s) found at the top of the C program by including their content into

this C program
Compiler

gcc -Og -S sum _store.i
—S sum store.c

OR gcc -Og

Compiles the C program into an assembly language program

optional

Assembly program (.s)
— sum store.s

Assembler

Disassembler
~objdump -d ss

“gdb/ddd debugger

ISA - Instruction Set Architecture

— sum store.o

Object (.0)
Executable
—

Ss Loader

Computer executes it

CPU Memory

gcc —g —c main.s sum store.s

Assembles the assembly language program into an object file (series of
0's and 1') which is a combination of machine language instructions,
data and info needed to place all of this properly into memory

Linker gcc —-o ss main.o sum store.o
Combines independently assembled machine
language programs with library routines into an
executable file

./ss 5 6

Loads machine code (from files) into proper memory

locations for execution by CPU

Today's Menu

»
» Assembly language basics: data, move operation

= Memory addressing modes

Programming in C versus in x86-64
assembly language

When programming in C, we can ...
» Store/retfrieve data into/from memory, i.e. variables

= Perform calculations on data
= ec.g., arithmetic, logic, shift
= Transfer control: decide what part of the program to execute

next based on some condifion
» c.g., if-else, loop, function call

When programming in assembly language, we can do the
5 same things, however ...

Programming in x86-64 assembly

» . with assembly language (and machine code), parts of
the microprocessor state are visible to assembly
programmers that normally are hidden from C programmers

® As assembly programmers, we now have access to ...

CPU Memory

| \ Addresses

Registers "
Data

< >

Condition e Instructions

Codes <
6 > |

Hum ... Why are we learning assembly
language?

x86-64 Assembly Language - Data

= |ntegral numbers not stored in variables but in registers
= Distinction between different integer size: 1, 2, 4 and 8 bytes
» Addresses not stored in pointer variables but in registers
» Size: 8 bytes
» Treated as integral numbers

= Floating point numbers stored in different registers than
integral values

= Distinction between different floating point numbers: 4 and 8
bytes

= NO aggregate types such as arrays or structures

x86-64 Assembly Language — Data

Integer Reqisters

64-bit
(quad)
63.0

rax
rbx
rcx
rdx
rsi
rdi
rbp
rsp
r8
r9
rlo
rll
rl2
ril3
rl4
rl5

32-bit
(double)

31..0

eax
ebx
ecx
edx
esi
edi
ebp
esp
r8d
r9d
rl0d
rlld
rl2d
r13d
rlad
r15d

16-bit
(word)

15..0
ax
bx
cxX
dx
si

di

sp

r8w

row
rl0w
rllw
rl2w
rl3w
rldw

rlb5w

8-bit
(byte)

7.0
al
bl
cl
dl
sil
dil
bpl
spl
r8b
r9b
rl0b
rllb
rl2b
ril3b
rl4b
rl5b

Storage locations in CPU
-> fastest storage

16 registers are used
explicitly — must name them

in assembly code %\'ax

Some registers are used
implicitly

» c.g., PC, FLAGS

Each reqister is 64 bits in size,
but we can refer to its:

» first byte LSB (8 bits),
» first 2 bytes (16 bifs),
w» first 4 bytes (32 bits),
= or to all of its 8 bytes (64 bits)

About these Integer registers!

I |

MSb 63 31 15

nt = bits worth of data, then | can use register names such as

or

or

About these Integer registers!

MSb 63 31 15 LS O

=
J
=

If | want 16 bits worth of data, then | can use register names such as $ax or di or $rl2w

(&

About these Integer registers!

MSb 63 3] 15 / LSb 0
If | \vant 32 bits worth of data, then | can use register names such as Seax or $edi or $rl12d

About these Integer registers!

MSb 63 31 15 /__LSbO

r
- J
Y

If want 64 bits worth of data, then | can use register names such as $rax or $rdi or $rl2

About these Integer registers!

MSb 63 3] 15 / LSb 0
nt = bits worth of data, then | can use register names such as or or
(. J
Y

If | want 16 bits worth of datq, then | can use register names such as Sax or di or $rl2w

. J
Y

If | want 32 bits worth of data, then | can use register names such as Seax or $edi or $rl12d

- J
Y

If | want é4 bits worth of data, then | can use register names such as $rax or $rdi oOr $rl2

Remember that tor all 16 registers ...

|

Let’s use the
reqister associated M3 63 3 Lo Z LD O
with the names
srax, seax, sax
and .
as an example: " $rax, $eax, sax ANd all refer to the same register
= However...
= Each refer to a different section of this register

= Srax refersto all 64 bits of this register

= %eax refersto only 32 bits of this register
= the LS 32 bits of it -> bit O to bit 31

= 2ax refersto only 16 bits of this register
= the LS 16 bits of it -> bit 0 to bit 15

m refers to only 8 bits of this reqgister
= the LS 8 bits of it -> bit 0 to bit 7

x86-64 Assembly Language - Instructions

» ") operand” assembly language

» x86-64 functionally complete -> i.e., it is “Turing complete”
= 3 classes of instructions
1. Memory reference => Data transfer instructions

= Transfer data between memory and registers
= Load data from memory into register
» Store register data info memory

= Move data from one register to another
2. Arithmetic and logical => Data manipulation instructions
= Perform calculations on register data
» e.g., arithmetic, logic, shift
3. Branch and jump => Program control instructions
= Transfer conftrol

= Jnconditional jumps to/from functions
= Jnconditional/conditional branches

Homexvork.: movil g ?xJFF/-l IBO-P\/Q., %eaﬁ
Move data — mov* **°% s2bis

1. Memory reference => Data fransfer instructions
» Transfer data between memaory and registers

®» Syntax: mov* Source, bestination
= Example: movg %]I:‘(di, srax * -> Size designator
N g -> long 64
=» Allowed moves: 1 =>int 32
= From register to register (Move) w -> short 16
= From memory to register (Load) b -> char 8

» From register to memory (Store)

» Conditional move (cmov*)
17 = Same as above, but based on result of comparison

Demo — Swap Function

= Problem: Let's swap the contents of two variables

= For now, we need to know that
= Argument 1 of function swap(...) -> saved in $rdi

» Argument 2 of function swap(...) ->saved in $rsi

Demo - Swap Function indivedt
Xp-> ol |

21
void swap(long *&p), long *yp) |(sSwap: yp— % sl CO/“WBV'*S
{ movq @rd'), $rax [# L1 = *xp

long L1 = *xp; be.cau.%e, movq (%rsi), %rdx | # L2 = *yp
long L2 = *yp; contarng movq %Mrdi) *xp = L2
*xp = L2; G.V\add’c'ess. movq %raMrsi) # *yp = L1
*yp = L1; S+ b8 ret

return;

: oo Zxdl & I%vs‘f are used £ hold 4 valie. ‘Jpﬁ

: Memory =>Remember:
Srdi |Ox D20 0x0020 /% view of memory
Syrgi OXOOw 0x0018
0x0010
$rax
1'22) 0x0008
19 srdx| 456 0x0000 | o [12>

123

Operand Combinations for mov*

Source Dest Src, Dest inC
Memory addressing modes
4 . Register movqg $0x4, $rax result = 0x4;
Immediate
Memory movg $-147, (Srax) *result = -147;
. ' movqg %$rax, $rdx varl = result;
Nov* < Register Register g
Memory movqg %rax, ($rdx) *varl = result;
kI\/Iemory Register movqg (%rax), srdx varl = *result;

20 Cannot do memory-memory transfer with a single mov* instruction

Homework 2

®» Since we cannot do memory-memory transfer with @
single mov* Instruction ...

= Can you write a litfle x86-64 assembly program that transfers
data stored at address 0x0000 to address 0x0018 ¢

- Memory

Registers Address

ordi 0x0020

S 0x0018

- 0x0010
2Y¥aXx

0x0008

21 srdx 00000 6

Summary

» As x86-64 assembly s/w dev., we now get to see more of the microprocessor
(CPU) state: PC, registers, condition codes

» x86-64 assembly language - Data
» 16 intfeger reqisters of 1, 2, 4 or 8 bytes + memory address of 8 bytes
» Floating point registers of 4 or 8 bytes
= No aggregate types such as arrays or structures

» x86-64 assembly language - Instructions
= mov* instruction family
= From register to register
= From memory to register
= From register to memory
= Memory addressing modes
59 » Cannot do memory-memory transfer with a single mov* instruction

Next Lecture

Operation 1leag and Arithmetic & logical operations

23

