
1

CMPT 295
Unit - Data Representation

Lecture 5 – Representing fractional numbers in memory
– IEEE floating point representation

Last Lecture

-2w
135

-121

-256

+2w+256
-135

If w = 8

121

-2w300

44
-256

If w = 8

Conclusion: the same bit pattern

is interpreted differently.

Conclusion: the same

bit pattern is interpreted

differently.

 Demo of size and sign conversion in C: code and results posted!

 Addition:

 Unsigned/signed:

 Behave the same way at the bit level

 Interpretation of resulting bit vector (sum) may differ

 Unsigned addition -> true sum may overflow its w bits in memory

 If so, then actual sum = (x + y) mod 2w (equivalent to subtracting 2w from true sum (x + y))

 Signed addition -> true sum may overflow its w bits in memory

 If so then …

 actual sum = U2Tw [(x + y) mod 2w]

 true sum may be too +ve -> positive overflow OR too –ve -> negative overflow

 Subtraction

 Becomes an addition where the 2nd operand is transformed into its additive inverse in two’s
complement

 Multiplication:

 Unsigned: actual product = (x * y) mod 2w

 Signed: actual product = U2Tw [(x * y) mod 2w]

 Can be replaced by additions and shifts

2

Questions

 Why are we learning this?

 What can we do in our program when we suspect that overflow

may occur?

3

Demo – Looking at integer additions in C

 What does the demo illustrate?

 Unsigned addition

Without overflow

With overflow

Can overflow be predicted?

 Signed addition

Without overflow

With positive overflow and negative overflow

Can overflow be predicted?

 This demo (code and results) posted on our course web site

4

Today’s Menu

 Representing data in memory – Most of this is review

 “Under the Hood” - Von Neumann architecture

 Bits and bytes in memory

 How to diagram memory -> Used in this course and other references

 How to represent series of bits -> In binary, in hexadecimal (conversion)

 What kind of information (data) do series of bits represent -> Encoding scheme

 Order of bytes in memory -> Endian

 Bit manipulation – bitwise operations

 Boolean algebra + Shifting

 Representing integral numbers in memory

 Unsigned and signed

 Converting, expanding and truncating

 Arithmetic operations

 Representing real numbers in memory

 IEEE floating point representation

 Floating point in C – casting, rounding, addition, …
5

We’ll illustrate

what we covered

today by having

a demo!

Converting a fractional decimal number

into a binary number (bit vector)

 How would 346.625 (= 346 5/8) be represented as a binary

number?

 Expanding the subtraction method we have already seen:

346.625 ->

Binary representation is: 1 0 1 0 1 1 0 1 0 . 1 0 12

346 - 256 = 90 -> 1 x 28

90 - 128 ->  -> 0 x 27

90 - 64 = 26 -> 1 x 26

26 - 32 ->  -> 0 x 25

26 - 16 = 10 -> 1 x 24

10 - 8 = 2 -> 1 x 23

2 - 4 ->  -> 0 x 22

2 - 2 = 0 -> 1 x 21

0 - 1 ->  -> 0 x 20

.625 - 0.5 = 0.125 -> 1 x 2-1

.125 - 0.25 ->  -> 0 x 2-2

.125 - 0.125 = 0 -> 1 x 2-3

MSb LSbLSb MSb

MSb

Negative Powers

of 2

2−1 = 0.5

2−2 = 0.25

2−3 = 0.125

2−4 = 0.0625

2−5 = 0.031256

LSb

LSb

MSb

R2B(X)

Converting a binary number into a

fractional decimal number

 How would 1011.1012 be represented as a fractional

decimal number?

7

B2R(X)

Review: Fractional decimal numbers

 Positional notation: 10i

10i-1

100

10

1

1/10

1/100

1/1000

10-j

di di-1 ••• d2 d1 d0 d-1 d-2 d-3 ••• d-j

• • •

• • •

Example:

2.345 = 2×100 + 3×10−1 + 4×10−2 + 5×10−3

100

10−1

10−2

10−3

8

 Positional notation: can this be a possible encoding scheme?

2i

2i-1

4

2

1

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

• • •

1/2

1/4

1/8

2-j

Converting a binary number into a

fractional decimal number

9

B2R(X)

Converting a binary number into a

fractional decimal number

Negative Powers

of 2

2−1 = 0.5

2−2 = 0.25

2−3 = 0.125

2−4 = 0.0625

2−5 = 0.03125

2−6 = 0.015625

2−7 = 0.0078125

2−8 = 0.00390625

 How would 1011.1012 be represented as a fractional decimal

number?

 Using the positional encoding scheme:

1011.1012 =>

10112 -> 1 x 23 + 1 x 21 + 1 x 20 = 1110

.1012 -> 1 x 2-1 + 1 x 2-3 = 0.5 + 0.125 = 0.62510

Result:
10

B2R(X)

Positional notation as encoding scheme?

One way to answer this question is to investigate whether

the encoding scheme allows for arithmetic operations

 Let’s see: Using the positional notation as an encoding

scheme produces fractional binary numbers that can be

added

multiplied by 2 by shifting left

divided by 2 by shifting right (unsigned)

 Example: 1011.1012 = 11 5/8 => 8 + 2 + 1 + 1/2 + 1/8

101.11012 = 5 13/16 => 4 + 1 + 1/2 + 1/4 + 1/16

10.111012 = 2 29/32 => 2 + 1/2 + 1/4 + 1/8 + 1/32

1011.1012 = 11 5/8 => 8 + 2 + 1 + 1/2 + 1/8

10111.012 = 23 1/4 => 16 + 4 + 2 + 1 + 1/4

Divide by 2: >>

Divide by 2: >>

Multiply by 2: <<
11

So far so good! 

Positional notation as encoding scheme?

 Advantage (so far):

 Straightforward arithmetic: can shift to multiply and divide, convert

 Disadvantage:

 Cannot encode all fractional numbers:

Can only represent numbers of the form x/2k (what about 1/5 or -34.8)

 Only one setting of binary point within the w bits -> this limits the range of
possible values

What is this range?

Example -> w = 32 bits and binary point located at 16th bit :

1111111111111111.1111111111111111

 Range: [0.0 .. 131071.99999….]
[0 .. 131071] [0 .. 1 - ε]

12

Not so good anymore! 

Representing fractional numbers in memory

 Here is another possible encoding scheme:

IEEE floating point representation (IEEE Standard 754)

Overview:

 Binary Numerical Form: V = (–1)s M 2E

s – Sign bit -> determines whether number is negative or positive

M – Significand (or Mantissa) -> fractional part of number

E – Exponent

 Form of bit pattern:

Most significant bit (MSb) s (similar to sign-magnitude encoding)

exp field encodes E (but is not equal to E)

 frac field encodes M (but is not equal to M)

s exp frac

13

IEEE Floating Point Representation

Precision options

 Single precision: 32 bits ≈ 7 decimal digits, range:10±38

 Double precision: 64 bits ≈ 16 decimal digits, range:10±308

s exp frac

1 8 bits 23 bits

S exp Frac

1 11 bits 52 bits

In C:

14

IEEE Floating Point Representation

Three “kinds” of values

s exp frac

k bits n bits

00…00 (all 0’s)

denormalized
exp ≠ 0 and exp ≠ 11…11

normalized

E = exp – bias
and bias = 2k-1 – 1

M = 1 + frac

11…11 (all 1’s)

special cases

Numerical Form: V = (–1)s M 2E

Why is E biased? Using single precision as an example:
• exp range: [00000001 .. 11111110] and bias = 28-1 – 1

• E range: [-126 .. 127]

• If no bias: E range: [1 .. 254] => 21 to 2254

Why adding 1 to frac?

Because number V is first normalized before it is converted.
15

so cannot

express
numbers < 2 

Review: Scientific Notation and normalization

 From Wikipedia:

 Scientific notation is a way of expressing numbers that are too large or too

small (usually would result a long string of digits) to be conveniently written in

decimal form.

 In scientific notation, nonzero numbers are written in the form m × 10n

 In normalized notation, the exponent n is chosen so that the absolute value

of the significand m is at least 1 but less than 10.

 Examples:

 A proton's mass is 0.0000000000000000000000000016726 kg -> 1.6726×10−27 kg

 Speed of light is 299,792,458 m/s -> 2.99792,458×108 m/s

 Let’s try: 1 0 1 0 1 1 0 1 0 . 1 0 12 ->

Syntax +/− d0 . d−1 d−2 d−3 … d−n × b exp

sign significand base exponent

16

Carnegie Mellon

Summary

 Representing integral numbers (signed/unsigned) in memory:

Encode schemes allow for small range of values exactly

 Representing fractional numbers in memory:

1. Positional notation (advantages and disadvantages)

2. IEEE floating point representation: wider range, mostly approximately

Overview of IEEE Floating Point representation

 V = (-1)s x M x 2E

 Precision options

 3 kinds: normalized,

denormalized

and special values

17

Today’s Menu

 Representing data in memory – Most of this is review

 “Under the Hood” - Von Neumann architecture

 Bits and bytes in memory

 How to diagram memory -> Used in this course and other references

 How to represent series of bits -> In binary, in hexadecimal (conversion)

 What kind of information (data) do series of bits represent -> Encoding scheme

 Order of bytes in memory -> Endian

 Bit manipulation – bitwise operations

 Boolean algebra + Shifting

 Representing integral numbers in memory

 Unsigned and signed

 Converting, expanding and truncating

 Arithmetic operations

 Representing real numbers in memory

 IEEE floating point representation

 Floating point in C – casting, rounding, addition, …
18

