CMPT 295

Unit - Data Representation

Lecture 5 — Representing fractional numbers in memory
— |EEE floating point representation

Last Lecture

= Demo of size and sign conversion in C: code and results posted!

N TrkJeSum Ifw=28]
= Addifion: 2 Overflow
: : 300 ow
= Unsigned/signed: 5w 1 | -28%7Actualsum
= Behave the same way at the bit level [44
= |nterpretation of resulting bit vector (sum) may differ 0
e somm fw=8] = Unsigned addition -> true sum may overflow its w bits in memory—— Uty
zw{ésn Positive Overflow e al Sum = |f so, then acfual sum = (x + y) mod 2% (equivalent to subtracting 2% from true sum (x +y))
2T 121 <« = Signed addition -> frue sum may overflow its w bitsi .
0 + Conclusion: the same
-121 ®» |f sO then ... bit pattern is interpreted
w1 T +254/4+2% , differently.
-135 Negative Overflow u +“ v - OCTUO' sum = U2Tw [(X + Y) mOd 2W] -
_2w -

= frue sum may be too +ve -> positive overflow OR too -ve -> negative overflow
= Subftraction

= Becomes an addition where the 2"d operand is transformed into its additive inverse in two's
complement

= Multiplication:
» Unsigned: actual product = (x * y) mod 2%

: . _ * w Conclusion: the same bit pattern
2 = Signed: actual product = U2T [(x * y) mod 2%] <{ is interpreted differently.]
» Can be replaced by additions and shifts

Questions

= Why are we learning this?

= What can we do in our program when we suspect that overflow
MAay OCCuUre

Demo — Looking at integer additions in C

» What does the demo illustrate?

= Unsigned addition
= Without overflow

=» With overflow

= Can overflow be predicted?
= Signed addition
= Without overflow
= With positive overflow and negative overflow

= Can overflow be predicted?

= This demo (code and results) posted on our course web site

Today's Menu

»
»
»
»
»
»
»
»
»
»
We'll illustrate -
what we covered »
today by having -
a demo!

= Representing real numbers in memory
= |EEE floating point representation

Converting a fractional decimal number
INfo a binary number (bit vector)

= How would 346.625 (= 346 5/8) be represented as a binary
numbere

R2B(X)

= Expanding the subtraction method we have already seen: .
346.625 -> 346 - 256 =90 > 1 x28 mMsb .625-0.5=0.125-> 1 x 2

90-128->® ->0x?27 125-025->6 —>Ox2'fSb
0-64=26 ->1x2¢ 125-0.125=0 > 1x23
26-32>® ->0x2°
2% -16=10 ->1x24 Negative Powers
10-8 =2 ->1x2 ot 2
2-4>@ ->0x22 271=0.5
2-2=0 ->1x2 %:8-%5
- 1> -> O Lsb G
6 Olv\Sb] iy (L)s: I\2/\Sb LSb 27 =06
Binary representationis: 101011010.101, 27°=0.03125

B2R(X) Converting a binary number intfo d
fractional decimal number

= How would 1011.101, be represented as a fractional
decimal number?

Review: Fractional decimal numbers

» Positional notation:

10/

10i—1

100

10
‘,_1

di |di-1| ®e° | d>

ds dol d.s

Example:
2.345=2x100+4+ 3x107" + 4x1072+ 5x1073

100
fi
1072
10-3

1/10 —

1/100
1/1000

107

Converting a binary number into a

B2R(X) , ,
fractional decimal number

» Positional notation: can this be a possible encoding scheme?
2i

2i-1

4

[

bi |bii| eee | bs | b bolbl boo|bs| eee | b

1/2 ——' ‘

1/4—
1/8 —

9 27

Converting a binary number into a

B2R(X) , ,
fractional decimal number

= How would 1011.101, be represented as a fractional decimal
numbere

» Using the positional encoding scheme:

Negative Powers

1011.101, => of 2

271=0.5
272=0.25
23=0.125
01, >1x2T+1x 23=0.5+0.125=0.625,;, |2-4=0.0625

27> =0.03125
276 =0.015625
Result: 27 =0.0078125
278 = 0.003920625

1011, >1x22+1x 2"+1x 20= 11,

Positional notation as encoding scheme-e

®» One way to answer this question is fo investigate whether
the encoding scheme allows for arithmetic operations
®» | ct’s see: Using the positional notation as an encoding
scheme produces fractional binary numbers that can be
= odded
®» multiplied by 2 by shifting left
®» divided by 2 by shifting right (unsigned)

®» Fxample: 1011.101, =115/8 =>8+ 2+ 1+ 1/2+1/8
Divide by 2: >> 101.1101, = &5 13/16 =>4+ 1+ 1/2+1/4+1/16
Divide by 2: >> 10.11101, = 2 29/32 => 2+ 1/2+1/4+1/8+1/32
1011.101, = 115/8 => 8+ 2+1+1/2+1/8

A Multiply by 2: << 10111.01, = 231/4 => 16+4+2+ 1+ 1/4
So far so good! ©

Positional notation as encoding schemeze

» Advantage (so far):
= Straightforward arithmetic: can shift to multiply and divide, convert
= Disadvantage:

= Cannot encode all fractional numbers:
= Can only represent numbers of the form x/2% (what about 1/5 or -34.8)

= Only one setting of binary point within the w bits -> this limits the range of
possible values

= What is this range?
Example -> w = 32 bits and binary point located at 16 bit :
TTTTTT I T I T It At i i it inanand
N J)
Y

[0..131071] 0 ..1\[-8]

®» Range: [0.0.. 131071.99999...]

Not so good anymore! @

Representing fractional numlbers in memory

» Here is another possible encoding scheme:
IEEE floating point representation (IEEE Standard 754)

» Overview:.
= Binary Numerical Form: V = (1) M 2F

» s — Sign bit -> determines whether number is negative or positive

= M — Significand (or Mantissa) -> fractional part of number
» E — Exponent

» Form of bit pattern:

s |exp frac

= Most significant bit (MSb) s (similar to sign-magnitude encoding)

= cxp field encodes E (but is not equal to E)

w frac field encodes M (but is not equal fo M)

IEEE Floating Point Representation
Precision options

= Single precision: 32 bits = 7 decimal digits, range:10+38

S

exp

frac

1

8 bits

23 bits

= Double precision: 64 bits = 16 decimal digits, range:10+308

S

exp

Frac

1

11 bits

52 bits

In C;

IEEE Floating Point Representation
Three "kinds" of values

Numerical Form: V = (—=1)5 M 2°F

s [exp frac
k bits N bits
11...11 (all 1's)
special cases
00...00 (all O’s) expZz0andexp #11...11
denormalized normalized
E = exp— bias Why is E biased? Using single precision as an example:
and bics)s _oki_q | exprange: [00000001 .. 11111110] and bias = 281 -1
- Erange: [-126 .. 127] Z’XS;SSOT
If no bias: Erange: [1 .. 254] => 21 o 2254 < numbers<2®
M =1 +frac Why adding 1 to frac?
Because number V is first normalized before it is converted.

Review: Scientific Notation and normalization

= From Wikipedia:

= Scientific notation is a way of expressing numbers that are too large or too
small (usually would result a long string of digits) to be conveniently written in

decimal form.

® |n scientific notation, nonzero numbers are written in the form m x 10"

= |n normalized notation, the exponent n is chosen so that the absolute value
of the significand m is at least 1 but less than 10.

=» Examples:
= A profon's mass is 0.0000000000000000000000000016726 kg -> 1.6726x107%7 kg
» Speed of light is 299,792,458 m/s -> 2.99792,458x108 m/s

Syntax

+/-
sign

dy.d_;d.,d_;...d_, xbexp
significand base exponent

» let'stry:101011010.101,->

Summary

» Representing intfegral numbers (signed/unsigned) in memory:

» Encode schemes allow for small range of values exactly
» Representing fractional numbers in memory:

1. Positional notation (advantages and disadvantages)

2. |EEE floating point representation: wider range, mostly approximately
» Overview of IEEE Floating Point representation

Single precision: 32 bits
YV =(-1)sxMx2F = —

= Precision options m— 1 s 23-bits

Double precision: 64 bits

» 3 kinds: normalized,
denormalized
and special values

s (exp frac

1 11-bits 52-bits

Today's Menu

= Representing real numbers in memory
= |EEE floating point representation
= Floating point in C — casting, rounding, addition, ...

