P - A CLQ:\—O_J
CMPT hemalion O

Textbook : - (ecde, Programs
M FUmT Data|Representation PYeg >

Lecture 2 — Representing data in memory

CAL Volunteer Note-Taker Position

= |f you are taking lecture notes in CMPT 295 and your hand writing is @,9
you may be interested in applying for the following volunteer
note-taker position:

» The Centre for Accessible Learning (CAL) is looking for a CMPT 295 note-
taker

» CAL volunteer lecture note-takers are provided with a $100 credit
applied to their student account in acknowledgment of their assistance

» |nterested?

» Please see the email CAL has sent us

» Please feel free to call 778-782-3112 or email calexams@sfu.ca the Centre if
you have any questions

mailto:calexams@sfu.ca

Last Lecture

v COVID Protocol

v What is CMPT 2952
v What shall we learn in CMPT 2952
v What should we already know?
v Which resources do we have to help us learn all thise

v Activity
v Questions

Feedback on Lecture 1 Activity

= Thank you for participating in the Lecture 1 Activity!

» Feedback now posted on our course web site
» Check it outl!

Cha_p‘f@v 2 T oux fexThook
C__Unit Objectives

= Understand how a computer represents (encodes) data in
(fixed-size) memory

®» Become aware of the impact this fixed size has on ...

» Range of values represented in memory

» Results of arithmetic operations
®» Become aware of ...

= How one data type is converted to another
» And the impact this conversion has on the values

5 = Bottom Line: allow software developers to write more reliable code

Today's Menu

» Representing data in memory — Most of this is review

= “Under the Hood"” - Von Neumann architecture

= Bits and bytes in memory
= How to diagram memory -> Used in this course and other references
= How to represent series of bits -> In binary, in hexadecimal (conversion)
= What kind of information (data) do series of bits represent -> Encoding scheme
= Order of bytes in memory -> Endian

= Bit manipulation — bitwise operations
= Boolean algebra + Shifting

»
»
»
»
6 »

“Under the hood" - |
Von Neumgnn Orch”-ec-l-ure Architecture of

Most computers

C program (.c) The Blg PICTure Its features:

v CPU, memory,
input and ouput, bus

v' Data and instructions
(code/programs)
both stored in memory

Assembly program (.s)

Object (.0) then Executable

Compuien

AN e
: Process ing Unit Memory
pelgp?f:grol < 5‘]0\"@5 OPfEUT I
N eecutes [N |Sdoto | [N [PERNe

.

wsttachons Snstvuchaws

Computer executes it

CPU Memory

How to diagram memory

= Seen as alinear (contiguous) array of bytes Address MI |
=] byte (8 bits) smallest addressable unit of size-1
memaory * .
= Each byte has a unique address .
» Byfe-addressable memory . 0x0008
. 0x0007
= Computer reads a word worth of bits at @ 050006
time (=> word size) w
. 0x0005
= Questions: 00004
1. If word size is 8, how many bytes are read 0x0003
at a fime from memorye 00002

Answer: i blcjte. I 0x0001

2. If a computer can read 4 bytes at a time, its @OO@ — 14 bute —
wordsizeis 322 bits 5,

Closer look at memory

Address M[]
. . . size-1
= Typically, in a diagram, we
represent memory (memory ;
content) as a series of memory 0x0008
“cells” (or bits) in which one of 0x0007
two possible values (‘0 and ‘1) 0x0006
is stored 0x0005
0x0004
0x0003
0x0002
0x0001
0x0000

L,

7 1 memox "cel —>(o/1 0lo]o

Address
size-—-1

0x0008
0x0007
0x0006
0x0005
0x0004
0x0003
0x0002
0x0001
0x0000

M]

wW

7P

DX\

Address

Compressed view of memory

M]

size—8

tA.bJLQJS(j\S\'H

=

0x0018

(0x0010)

0x0008

——— 0x000045)

D &«

\/a.bﬁe%

—Alfte

(8bite)

1213

—

¥

?5
0x0001

OXOOO4L
0x0002 0x0005

0x0007

00003 0x0

'ooe;J

Soutes (¢4 lbited

Why can only two possible values
be stored in a memory “cell”<¢

» As electronic machines, computers use two voltage levels
= Transmitted on noisy wires -> value of two voltage levels vary over a range
» These ranges are abstracted using “0" and “1"

— 0 = e 1 >| — 0 —

1.1V
0.9V

0.2V
0.0V

» Back to the question Why can only two possible values be stored in a
memory “cell’ e

®» Because computers manipulate two-valued information

A bit of history

ENIAC: Electronic Numerical Intfegrator And Calculator
= U. Penn by Eckert + Mauchly (1946)

= Data: 20 x 10-digit regs
+ ~18,000 vacuum tubes

®» To code: manually set switches
and plugged cables

= Debugging was manuadl

=» No method to save program
for |GTer Use & / ENWC THEWOF.LD'%F’\STELE(TR)V\lC,Lh’r}Gﬁ.}_‘Eﬁ@i\Ev

QENERAL~ FURPOSE MIGTAL CO

» Separated code from
12 the data

2005/12/13 12:49 pm

Source: https://en.wikipedia.org/wiki/ENIAC#/media/File:ENIAC_Pennl .jpg

https://en.wikipedia.org/wiki/ENIAC#/media/File:Eniac.jpg

Review

Back to our bits
How 1o represent series of bits

» From binary numeral system

» Base: 2
» Bit values: 0 and 1
= Possible bit patterns in a byte: 00000000, to 11111111, °. 256
= Drawback of manipulating binary numberse Foselb\e.
L oy
= What number is thise Dattexns
= 1001100 11001001 01000101 01001000,
» | engthy to write -> not very compact Error prone!

» Difficult fo read

Review

A solution: hexadecimal numbers

0 0000 0

= Base: 16 . —

2 0010 2

= Values:0,1,2,...,2,A,B,C,D,EF 3 3

Possibl tt ' te: to FF | 4

= Possible patterns in a byte: 00,, fo FF,,) .

= Conversion binary -> hexC\X/= 3?) 6 0110 6

PPN e g% 0100f1100/11001001/01000101| 01001000, . -
OX 4 C‘ C’ q 4 5 4' 8 9 1001 9

10 1010 A

11 1011 B

H\W Ol = conversion hex > binary (\X/= l@) 12 1100 C
: S 13 (o) D

%\95@2\@ C: Ox3D5F) sy P

14 => 0o\ [10] 010] I, 15 @ F

What could these 32 bits represente
What kind of information could they encode?

01100010 O11T01001T O111T0100 O11100T11,

ANswer:

o ‘\’nJEa%e)(‘
e Swaa o chavadexs
. elowre

What kind of information (data) do
series of bits represente

Encoding Scheme

« ASCIl character
« Unsigned integer
« Two's complement

Bit pattern mmm) (signed) integer —>

Floating point

Letters and symbols
Positive numbers
Negative numbers
Real numbers

O0OT0 O1T10100T1 ° Memory Address C poinTers

D100 OTTTOOTT: 1. Assembly language Machine-level instructions
* RGB Colour
: MP3 Audio/Sound

Definition: An encoding scheme is an interpretation (representation) of a series of bits

Bottom line: Which encoding scheme is used to interpret a series of bits depends on
the application currently executing (the “context”) not the computer

Endian — Order of byftes in memory

®» |t |s stfraight forward to store a byte in memory
» All we need is the byte (series of bits) and a memory address
= For example, let's store byte 0111001 1, at address 00000

Address M \
size-1 -

0x0003
0x0002
0x0001
17 00000 | O111OOI {

Endian — Order of byftes in memory

Question: But how do we store sg;//eégl&by es in memorye
» For example, let’s store these 4 l5y’res s'r?cir’ring at address 0x0000

MS 01000010 01101001 01110100 (01110011,

e

ANswer: Way 1: Little endian A Way 2: Big endian
Address MI] Address M[|
el ize-1
{ \L N size-1 Size .
YL\ZI;h LS8 |oyest : in hex: : in hex:
< addx‘ess 0x0003] 01000010 2 0x0003| 01110071 1 13
- — oy | oxo002l 01101001 | 169 0x0002] 01110100 | |74
.H\X/i 0x0001] 01110100 | |34 \-’OXOOOI 01101001 | (€9
_ 0x0000. 01110011 | |¥3 0x0000[_01000010 | [42
Compressed [Address size-8 size 8
view of memory<)
Fl.,%dl 0x0008 0x0008
. g 0x00004F3[74|A |42 0x0000442|EA| M4 [F3

\

fl\lo maftter what

a series of bits
represent, they
can be
manipulated
using bit-level
operations:

- Boolean algebra

- Shiffing

J

~

Review

Bit Manipulation - Boolean algebra

» Developed by George Boole in 19th Century

= Algebraic representation of logic

» EFncode “True” as 1 and “False” as 0

= AND -> A&B = 1 when both A=1 and B=1

&

0 1

0
1

00
0 1

= NOT -> ~A =1 when A=0

T

~ ol

= OR > A|B =1 when either A=1 or B=1

0

1

0
1

0
1

1
1

= XOR (Exclusive-Or) -> AAB =1 when

—h

- OO

1
1
0

either A=1 or B=1,
but not both

Interesting fact
about Boolean algebra and digital logic

» Claude Shannon — 1937 master’s thesis

» Made connection between Boolean algebra and digital
logic
= Boolean algebra could be applied to design and analysis of digital
systems (digital circuits)
h1gh

.
—

dlgltal circuit
=> we can describe it as an AND gate

» Example:

Review ‘th/QLl

Let’s try some Boolean algebral

» Operations applied bitwise -> to each bit
» Spof the error(s):

01101001, 01101001, 01101001,
& 01010101, | 01010101, ~ 01010101, ~ 01010101,
01000001, 01111101, 00111110, 10101010,

I

exvex |

21

Useful bit manipulations

= Using a binary mask (or bit mask) as an operand
1. AND: Extracts parficular bit(s) so we can test whether they are set

i.e., setto 1

, <-some value x
, <-binary mask

»Example: 1011001
& 0000000
0000000

2. XOR: Toggle specific bits
»Fxample: 101[100[L1, <-some value x
~ 00011100, <-binary mask

10101111, | we get atoggled version of the 3 original bits (of x) that
TS correspond to the 3 set bits of the binary mask

[~]

%\ The result tells us that the least significant bit (LSb) of x is set

= Using two operands
1. OR: Merge all set bits of operands
= Fxample: 0110011, <-some value x

1]
| 100011100, <-some valuey
1

22 bt
Opiiill The result contfains all the set bits of x and y

Bit Manipulation - Shift operations

» | eff Shiff: x << vy ® Right Shift: x >> y
= Shift bit vector x left = Shift bit vector x right
[O oo ol o7 y positions y posifions
= Fffect: » Fffect:
= Throw away y most = Throw away y least significant
significant bits (MSb) of x bits (LSb) of x on right
on left

= | ogical shift: Fill x with y 0’s on left
= Fill x with y 0's on right
= Arithmetic shiff: Fill x with y copies

of x's sign bit on left

= Sign bit: most significant bit (MSb)
of x (before shiffing occurred)

» | Sb: least significant bit is the rightmost bit
of a series of bits (or bit vector)

= MSb: most significant bit is the leftmost bit
of a series of bits (or bit vector)

Bit Manipulation - Shift operations — Let’s try!

» | eft Shift: 10111001, << 4 » Right Shiff: 00111001, >> 4
logical
answex' : 60| 0000, ahswex. 000 OO |,
» | eft Shift: 10111001, << 2 = Right Shift: %t?%lidl’{%%qz >> 4
arithmetic -
answex: {00100, answex. IOV,

= Right Shift: 10111001, >> 2
logical and arithmetic

24 answex's . OO‘OI‘IOz
LI 1o\WO,

Summary

= Von Neumann architecture
» Architecture of most computers
= [|fs components: CPU, memory, input and ouput, bus
» One of ifs characteristics: Data and code (programs) both stored in memory

®» A look at memory: defined byte-addressable memory, diagram of (compressed) memory

= Word size (w): size of a series of bits (or bit vector) we manipulate, also size of machine words
(see Section 2.1.2)

= A ook atf bits in memory
= Why binary numeral system (0 and 1 -> two values) is used to represent information in memory

= Algorithm for converting binary to hexadecimal (hex)
. Partition bit vector intfo groups of 4 bits, starting from right, i.e., least significant byte (LSB)
®» |f most significant “byte” (MSB) does not have 8 bits, pad it: add 0’s to its left
2 Translate each group of 4 bits into its hex value

= What do bits represent? Encoding scheme gives meaning to bits

= QOrder of bytes in memory: little endian versus big endian
= Sraerotoy Y , S NOTE:)
= Bit manipulation —regardless of what bit vectors represent C logical operators
= Boolean algebra: bitwise operations => AND (&), OR (1), XOR (*), NOT (~) and C bitwise (bit-level)
» Shift operations: left shift, right logical shift and right arithmetic shift operofors behave
5 = Logical shift: Fill x with y 0's on left differently!
= Arithmetic shift: Fill x with y copies of x's sign bit on left Watch out for && versus

= Sign bit: Most significant bit (MSb) before shifting occurred &, || versus |, ... /

Next Lecture

» Representing integral numbers in memory
= Unsigned and signed
= Converting, expanding and truncating

26 -

