
1

CMPT 295
Unit - Data Representation

Lecture 2 – Representing data in memory

Textbook 

Chapter 2



CAL Volunteer Note-Taker Position

 If you are taking lecture notes in CMPT 295 and your hand writing is 

you may be interested in applying for the following volunteer

note-taker position:

 The Centre for Accessible Learning (CAL) is looking for a CMPT 295 note-

taker

 CAL volunteer lecture note-takers are provided with a $100 credit 

applied to their student account in acknowledgment of their assistance

 Interested?

 Please see the email CAL has sent us

 Please feel free to call 778-782-3112 or email calexams@sfu.ca the Centre if 

you have any questions2

mailto:calexams@sfu.ca


Last Lecture

 COVID Protocol

 What is CMPT 295?

 What shall we learn in CMPT 295?

 What should we already know?

 Which resources do we have to help us learn all this? 

 Activity

 Questions
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Feedback on Lecture 1 Activity

 Thank you for participating in the Lecture 1 Activity!

 Feedback now posted on our course web site

Check it out!
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Unit Objectives

 Understand how a computer represents (encodes) data in 

(fixed-size) memory

 Become aware of the impact this fixed size has on …

 Range of values represented in memory

 Results of arithmetic operations

 Become aware of ...

 How one data type is converted to another

 And the impact this conversion has on the values

 Bottom Line: allow software developers to write more reliable code5



Today’s Menu

 Representing data in memory – Most of this is review

 “Under the Hood” - Von Neumann architecture

 Bits and bytes in memory 

 How to diagram memory -> Used in this course and other references

 How to represent series of bits -> In binary, in hexadecimal (conversion)

 What kind of information (data) do series of bits represent -> Encoding scheme

 Order of bytes in memory -> Endian

 Bit manipulation – bitwise operations

 Boolean algebra + Shifting

 Representing integral numbers in memory

 Unsigned and signed

 Converting, expanding and truncating

 Arithmetic operations

 Representing real numbers in memory

 IEEE floating point representation

 Floating point in C – casting, rounding, addition, …
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“Under the hood” -

Von Neumann architecture Architecture of 

most computers

Its features:

 CPU, memory, 

input and ouput, bus

 Data and instructions 

(code/programs) 

both stored in memory
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How to diagram memory

 Seen as a linear (contiguous) array of bytes

 1 byte (8 bits) smallest addressable unit of 
memory

 Each byte has a unique address

 Byte-addressable memory

 Computer reads a word worth of bits at a 
time (=> word size)

 Questions:

1. If word size is 8, how many bytes are read 
at a time from memory?

Answer: _________________

2. If a computer can read 4 bytes at a time, its 
word size is _________________ .

M[ ]

size−1

0x0000

. 
. 

. 

0x0001

0x0002

0x0003

0x0004

0x0005

0x0006

0x0007

0x0008

Address
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Closer look at memory

 Typically, in a diagram, we 

represent memory (memory 

content) as a series of memory 

“cells” (or bits) in which one of 

two possible values (‘0’ and ‘1’) 

is stored

0 1 0 0 0 0 0 0

M[ ]

size−1

0x0000

. 
. 

. 

0x0001

0x0002

0x0003

0x0004

0x0005

0x0006

0x0007

0x0008

Address
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Compressed view of memory

M[ ]

. 
. 

.

0x0000

0x0008

0x0010

0x0018

0x0001

0x0002

0x0003

0x0004 0x0007

0x0005

0x0006

size−8

Address

M[ ]

size−1

0x0000

. 
. 

. 

0x0001

0x0002

0x0003

0x0004

0x0005

0x0006

0x0007

0x0008

Address
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Why can only two possible values

be stored in a memory “cell”?
 As electronic machines, computers use two voltage levels

 Transmitted on noisy wires -> value of two voltage levels vary over a range

 These ranges are abstracted using “0” and “1”

 Back to the question Why can only two possible values be stored in a 
memory “cell”?

 Because computers manipulate two-valued information

0.0V

0.2V

0.9V

1.1V

0 1 0
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A bit of history

ENIAC:  Electronic Numerical Integrator And Calculator

 U. Penn by Eckert + Mauchly (1946)

 Data:  20 × 10-digit regs 

+ ~18,000 vacuum tubes

 To code:  manually set switches

and plugged cables

 Debugging was manual

 No method to save program

for later use

 Separated code from 

the data

Source: https://en.wikipedia.org/wiki/ENIAC#/media/File:ENIAC_Penn1.jpg
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Back to our bits

How to represent series of bits

 From binary numeral system

 Base: 2

 Bit values: 0 and 1

 Possible bit patterns in a byte: 000000002 to 111111112

 Drawback of manipulating binary numbers?

What number is this?  

 1001100 11001001 01000101 010010002   

Lengthy to write -> not very compact

Difficult to read

Error prone!

Review
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A solution: hexadecimal numbers

 Base: 16

 Values: 0, 1, 2, …, 9, A, B, C, D, E, F

 Possible patterns in a byte: 0016 to FF16

 Conversion binary -> hex

e.g.:   1001100 11001001 01000101 010010002

 Conversion hex -> binary

e.g.:   3D5F16    (in C: 0x3D5F)

Decimal Binary Hexadecimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

Review
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What could these 32 bits represent? 

What kind of information could they encode?

0 1 1 0 0 0 1 0   0 1 1 0 1 0 0 1   0 1 1 1 0 1 0 0   0 1 1 1 0 0 1 12

Answer:
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What kind of information (data) do 

series of bits represent?

• ASCII character

• Unsigned integer

• Two’s complement 

(signed) integer

• Floating point

• Memory Address

• Assembly language

• RGB

• MP3

• …

Encoding Scheme

Bit pattern

• Letters and symbols

• Positive numbers

• Negative numbers

• Real numbers

• C pointers

• Machine-level instructions

• Colour

• Audio/Sound

• …

Definition:  An encoding scheme is an interpretation (representation) of a series of bits

0 1 1 0 0 0 1 0   0 1 1 0 1 0 0 1   

0 1 1 1 0 1 0 0   0 1 1 1 0 0 1 12

Bottom line:  Which encoding scheme is used to interpret a series of bits depends on

the application currently executing (the “context”) not the computer
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Endian – Order of bytes in memory

 It is straight forward to store a byte in memory

All we need is the byte (series of bits) and a memory address

For example, let’s store byte  0 1 1 1 0 0 1 12 at address 0x0000

M[ ]

. 
. 
.

0x0000

0x0001

0x0002

0x0003

size−1

Address
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Endian – Order of bytes in memory

Question: But how do we store several bytes in memory? 

For example, let’s store these 4 bytes starting at address 0x0000

01000010  01101001  01110100  011100112

Answer:

M[ ]

. 
. 
.

Way 1: Little endian Way 2: Big endian

M[ ]

. 
. 
.

0x0000

0x0001

0x0002

0x0003

0x0000

0x0001

0x0002

0x0003

0 1 1 1 0 0 1 1

0 1 1 1 0 0 1 1

0 1 1 1 0 1 0 0

0 1 1 0 1 0 0 1

0 1 0 0 0 0 1 0

0 1 1 0 1 0 0 1

0 1 0 0 0 0 1 0

0 1 1 1 0 1 0 0

size−1

Address
size−1

Address

in hex: in hex:

. 
. 
.

Address size−1 size−1

0x0000

0x0008

0x0000

0x0008
18
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Bit Manipulation - Boolean algebra

 Developed by George Boole in 19th Century

 Algebraic representation of logic

Encode “True” as 1 and “False” as 0

 AND -> A&B = 1 when both A=1 and B=1  OR -> A|B = 1 when either A=1 or B=1

 NOT -> ~A = 1 when A=0  XOR (Exclusive-Or) -> A^B = 1 when

either A=1 or B=1,

but not both

ReviewNo matter what 

a series of bits 

represent, they 

can be 

manipulated 

using bit-level 

operations:
- Boolean algebra
- Shifting
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Interesting fact 

about Boolean algebra and digital logic

Claude Shannon – 1937 master’s thesis

Made connection between Boolean algebra and digital 

logic 

 Boolean algebra could be applied to design and analysis of digital 

systems (digital circuits)

 Example:        high

1

0

low

high

0

digital circuit

=> we can describe it as an AND gate20



Let’s try some Boolean algebra!

Operations applied bitwise -> to each bit

 Spot the error(s):

011010012
& 010101012

01000001

011010012
| 010101012

01111101

011010012
^ 010101012

00111100

~ 010101012
10101010

Review

010000012 011111012 001111102 101010102
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Useful bit manipulations

 Using a binary mask (or bit mask) as an operand

1. AND: Extracts particular bit(s) so we can test whether they are set 

Example: 101100112 <- some value x

& 000000012 <- binary mask

000000012

2. XOR: Toggle specific bits

Example:    101100112 <- some value x

^ 000111002 <- binary mask

101011112

 Using two operands

1. OR: Merge all set bits of operands

Example:     101100112 <- some value x

| 000111002 <- some value y

101111112

The result tells us that the least significant bit (LSb) of x is set

We get a toggled version of the 3 original bits (of x) that 

correspond to the 3 set bits of the binary mask

i.e., set to 1

The result contains all the set bits of x and y
22



Bit Manipulation - Shift operations

 Left Shift:  x << y

Shift bit vector x left 

y positions

Effect: 

Throw away y most 

significant bits (MSb) of x

on left

Fill x with y 0’s on right

 LSb: least significant bit is the rightmost bit 

of a series of bits (or bit vector)

 MSb: most significant bit is the leftmost bit 

of a series of bits (or bit vector)

a series of bits

 Right Shift:  x >> y

Shift bit vector x right 

y positions

Effect:

Throw away y least significant 

bits (LSb) of x on right

Logical shift: Fill x with y 0’s on left

Arithmetic shift: Fill x with y copies 

of x‘s sign bit on left

Sign bit: most significant bit (MSb) 
of x (before shifting occurred)
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Bit Manipulation - Shift operations – Let’s try!

 Left Shift: 101110012 << 4

 Left Shift: 101110012 << 2

 Right Shift: 001110012 >> 4

 Right Shift: 101110012 >> 4

 Right Shift: 101110012 >> 2

logical

arithmetic

logical and arithmetic
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Summary

 Von Neumann architecture

 Architecture of most computers

 Its components: CPU, memory, input and ouput, bus

 One of its characteristics: Data and code (programs) both stored in memory

 A look at memory: defined byte-addressable memory, diagram of (compressed) memory

 Word size (w): size of a series of bits (or bit vector) we manipulate, also size of machine words 
(see Section 2.1.2)

 A look at bits in memory

 Why binary numeral system (0 and 1 -> two values) is used to represent information in memory

 Algorithm for converting binary to hexadecimal (hex)
1. Partition bit vector into groups of 4 bits, starting from right, i.e., least significant byte (LSB)

 If most significant “byte” (MSB) does not have 8 bits, pad it: add 0’s to its left
2. Translate each group of 4 bits into its hex value

 What do bits represent? Encoding scheme gives meaning to bits

 Order of bytes in memory: little endian versus big endian

 Bit manipulation – regardless of what bit vectors represent

 Boolean algebra: bitwise operations => AND (&), OR (|), XOR (^), NOT (~) 

 Shift operations: left shift, right logical shift and right arithmetic shift

 Logical shift: Fill x with y 0’s on left

 Arithmetic shift: Fill x with y copies of x‘s sign bit on left

 Sign bit: Most significant bit (MSb) before shifting occurred

NOTE:
C logical operators 

and C bitwise (bit-level) 

operators behave 

differently!
Watch out for && versus 

&, || versus |,  … 
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Next Lecture

 Representing data in memory – Most of this is review

 “Under the Hood” - Von Neumann architecture

 Bits and bytes in memory 

 How to diagram memory -> Used in this course and other references

 How to represent series of bits -> In binary, in hexadecimal (conversion)

 What kind of information (data) do series of bits represent -> Encoding scheme

 Order of bytes in memory -> Endian

 Bit manipulation – bitwise operations

 Boolean algebra + Shifting

 Representing integral numbers in memory

 Unsigned and signed

 Converting, expanding and truncating

 Arithmetic operations

 Representing real numbers in memory

 IEEE floating point representation

 Floating point in C – casting, rounding, addition, …
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