

Sorting
-re-arranging elements of a sequence S s.t. $s_0 \leq s_1 \leq s_2 \leq \cdots \leq s_{n-1}$
- We will look at 5 sorting algorithms:
-3 iterative
-2 recursive

The iterative algorithms: · maintain a partition: "unsorted part & sorted part" . Sort a sequence of n elements in n-1 stages . at each stage, move 1 element from the unsorted part to the sorted part: "sorted" "unsorted" Sort(A) { l stage moves 1 element ·initialize repeat n-1 times more 1 element from unsorted to sorted part the algorithms differ in how they: - select an element to remore from the unsorted part - insert it into the sorted part

Insertion Sort n-1 elements in unsorted part. - initially: sorted part is just A[0] - repeat n-1 times: Sorted unsort - remove the first element from the unsorted part - • • - insert it into the sorted part (shifting elements to the right as needed) Sorted unson insertion_sort(A) for(i=1 to n-1)pirot = A[i] / first element in unsorted part j= i-1 Shift all elements in while (j>0 AND ALj]> pirot){ - Sorted part that ALj+1] = ALj] / shift jth are larger than pirot 2 3=3-1 1 to the right. A[j+1] = pivot/more pivot into position.

Insertion Sort Example . /. 3. .3 4 5 Sta

Selection Sort -initially, sorted part empty unsort - repeat n-1 times serted -find the smallest element in the unsorted part SWAP - move it to the first position which becomes the new last position of sorted part. • Sorted & UNSOR this is its selection_sort (A){ final location for (i=1 to n-1) { $\int_{k=i}^{j=i-1} \frac{\|j|_{j}}{|j|} \text{ is index of } \min_{k=i} \frac{1}{|j|} \frac{|j|_{j}}{|j|} \frac{|j|_{j}$ find min if (A[k] < A[j]) j=k; k=k+1 D. O. M. Qut swap A[c-1] and A[z]

Selection Sort Example Stagel **~ (**. |

Selection Sort Heapsort takes O(n) time -initially, sorted part empty - make unsorted part into a heap - repeat n-1 times - find the smallest exement 2 heap extract (US. O(n) for the in the unsorted part 2 takes log(n) scan in selection - move it to the first position which becomes the new Last position of sorted part.		
Consider the organization of array contacts:	· · ·	•
1 sorted unsorted Lifthis is the root of the heap, then	· · · ·	•
it is also the smallest element in the usorted part, so is in its correct final position. To use this		•
arrangement, the root of the heap keeps moring, so we have lots of shifting to do.	· · · ·	•
· · · · · · · · · · · · · · · · · · ·	· · ·	•

2 If this is the rost of the heap, then everything works: -we extract •; move the last leaf 0 to the root + do a percolate-down; store • where D was, which is now free, and is the correct final
location to: after which use have: sorted unsorted
But: we must re-code our heap implementation s.t. the root is at A[n-1], with the result that the indexing is now less intuitive.
3 Instead, we use a max-heap, and this airangement: unsorted sorted root of the tas leaf.
Now: the heep root is at A[0] heap extraction remores •, moves • to A[0], freeing up the spot where • belongs. Leaving us :
Re-cooling a min Heep into a maxheep is just replacing < with > and vice verse.

Selection Sort Heapsort -initially, sorted part empty Theap with max here - make unsorted part into a max heap - repeat n-1 times 1919est -find the smallest element > take mox elenew from root ... in the unsorted part take last leef from 'end' of heap - move it to the first position which becomes the new test position of sorted part. newest element of sorted X y new root of this is its heepsort(A) { build Maxheep(A) final location heap (which then gets percolated for (i=1 to n-1) { down A[n-i] = antract Max () unsorted heap Sorted of Size 1 nes smallest element.

Heapsort with in line percolate - down	
heapsort (A) E make Max Heap (A) for (i=1 to n-1) E // more last lead to root swap A[0] and A[n-i] // and old root to where swap A[0] and A[n-i] // last leaf was.	
$\begin{aligned} size \leftarrow n-i+1 \text{ // size of heap = size of unsorted part} \\ j \leftarrow 0 \\ while (2j+1 < size) \\ ehild \leftarrow 2j+1 \\ if (2j+2 < size AND A (2j+2] < A (2j+1)) \\ \end{aligned}$	peroloste
child = 2j+2 3 if (A[ch.ld] < A[j]) { swap A[child] and A[j] a a child	
J = courd J = size / terminate the white. J = size / terminate the white.	· ·
3	. .

Heapsort Example: into 2 stage 1 Stage stage 3 Stage. stage 2

Time Complexity of Iterative Sorting Algorithms · each algorithm does exactly n-1 stages . The work done at the its stage varies with the algorithm (finput) . We take # of item comparisons as a measure of work (time. Selection Sort - exactly n-i comparisons to find min. element in unsorted part Insertion Sort - between 1 and i comparisons to find location for pivot between land 2 log2 (n-i+1) comparisons HeapSort: for percolate-down

- We must verify # con times # compare work done b	asisons nparisons (or some ronstan isons) is an upper bound a by each algorithm.	
- # of assignments in actual ron	(Éswaps) also matters time	. .
. .		· ·
. .	. .	· ·
. .	. .	· ·
· · · · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Selection Sort		· · · · · · · · ·
On input of size n, # of comparisons (regardless of input):	is always	
$\sum_{i=1}^{n-1} (n-i) = \sum_{i=1}^{n-1} i$		· · · · · · · · ·
$\mathcal{L} = 1 \qquad \mathcal{L} = 1 \qquad = \mathbf{S}(\mathbf{n} - 1)$	· · · · · · · · ·	. .
$= \left(\frac{n-1}{2} \right) \left(\frac{n}{2} \right)$		
$= \Omega(2^{2})$	· · · · · · · · ·	· · · · · · · · · ·
		· · · · · · · · ·

Insertion Sort - Worst Case Upper Bound: # comparisons $\leq \sum_{i=1}^{n-1} i = \frac{n^2 - n}{2} = O(n^2)$ Lower Bound: Worst case: initial sequence is in reverse order. Eg. [1] n-1 n-2 -.... [1] In the its stage we have n-i+1 n-i+2 ... n n-i n-i-1 ... 21n-i n-i+1 ... n-1 n n-i-1 ... [2] [] This takes i comparisons, because the sorted part is of size i. So, # comparisons $\gg \sum_{i=1}^{n-1} i = \int_{n^2} (n^2)$ So, Insertion Sort Worst Case is $\Theta(n^2)$

	•	•		B	15	er	·+	i i Ca	DI	N e			0	r	t i	-1		2 1		28	5	2	1			2.2	s. N				•	Ì.	S	•	ſ) U	L	J V		•	51	- 		21	~ <i>e</i>	2.0	L	•	•	•	•	•		•	•	•	•
•	•	•		 	ħ	eu	L :	•		L L		N	2	2	C J	h e			4	- 6	2	3	¢		•	E			a	C		-1	レ く	S.	•	1	•		.		n	P	2		Š	۔ م ا	h	•	ני גי	S	•	•		•	•	•	•
	•	•	•			; :		4		2	0	N	0	- - - -	a	(12	50	5)	Ľ	S	•	-		•	V	Z	•	-	ŀ	•	9		•	6)	(ŗ		י א נ נ	•	•	•	•	•	•		•	•	•	•	•		•	•	•	•
•	•	•	•	• •				•	•	•	•		•	•	•	•		•	•		•	•		•			•	•		•	•		•	•	•		•	•	•	•		•	•	•	•			•	•	•	•	•			•	•	•
•		•	•			•		•	•		٠			٠	•			٠	٠		•			•	۰		٠	٠		•	٠		•	٠			•	٠	٠	•		•	٠	٠		٠		•	٠	٠	٠	٠		•		٠	•
	•	•	•					•	•	•	•			•				•	•		•	•		•	•		•	•		•	•			•				•	•			•	•	•		•			•	•	•				•	•	•
•	•	•	•					•			٠			•				٠							•		•							٠				٠	·	•		•	•	٠		•			•	٠	٠	•			•	٠	
			•					•						•				•			٠						•						•					٠	·			•	•			•			·	٠					•	•	•
	•	•	•					•	•	•	•			•	•			٠	•		•	•			•		•	٠		•	•		•	٠			•	•	٠	٠		•	•	٠	·	•		•	٠	•	•	•			•	•	•
	•	•	•					•	•	•	•			•	•	•		•	•		•	•		•	•		•	•		•	•		•	•	•		•	•	•	•		•	•	•	•	•		•	•	•	•	•		•	•	•	•
			•					•							•						•												•				•					•						•									
	•	•	•					•		٠					•				•		•												•	٠			•					•						•				•			•		
•		•	•					•	•	•	٠			•				٠			•				٠		•	•		•	•		•	٠			•	•	٠	•		•	٠	٠	٠	٠		•	٠	٠	•			•	•	•	•
	•	•	•					•	•	•	•			•	•			•	•		•	•		•			•			•	•		•	•			•	•	•			•	•	•	•	•		•	•	•	•	•		•	•	•	•
	•	•	•			•		•		•				•	•			•			•			•	•			•		•	•		•	•			•	•	•	•			•	•	•	•		•	•	•					•	•	•
								•							•																			٠								•															
			•																																																						
	•	•	•					•	•	•				•				•			•			•						•			•	•				•				•						•	•						•	•	•

Opper Bound: # 10moaris	$n \le \frac{n-1}{2} \log_2(n-i+1)$	· · · · · · · · · · · · · · · · · · ·	· · · · ·	· · · ·	· · ·	· · · ·
		· · · · · ·	· · · ·		· ·	· · · ·
· · · · · · · · · · · · ·	$= 2 \ge \log_2(L+1)$ <i>i</i> =1					
· · · · · · · · · · · · ·	$\leq 2 \sum_{i=1}^{\infty} \log_2 n$		· · · ·			
· · · · · · · · · · · ·	$\leq 2n \log_2 n$	· · · · · ·			· ·	
	$= O(n \log n)$	· · · · · ·				· · ·
Louser Bound?	· · · · · · · · · · · · · · · · · · ·	· · · · · ·		· · · · ·		
Best Case?	(1) bet input would	load -	to 00	· · · · ·		
	movement during What if we exclude	percola this c	te -d	lown		· · ·

Recursive Divide ? Conquer Sorting . Partition the sequence A into two parts AI, Az . Recursively sort each of A, and Az . Combine the sorted versions of A, and Az to obtain a sorted version of A 301 Partition Sort . The algorithms differ in how they choose the partition, and how they combine the sorted parts

Merges · Uses t	ort: he fact t	hat merging ti	so sorted	lists is	easy	· · ·
	2569			· · · · · · · · · · · · · · · · · · ·		· · ·
	1 2 3 4 1 5 - + + + + +		λ	· · · · · · · · ·		· · ·
		··· 190 91		00 (101 (102) 103	<u>1</u>	· · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·		6 14 132 (3) 	· · · · · · · · ·	· · · · · ·	· · ·
•Takes	O(n) time	, where n is	the total	size	· · · · · ·	· · ·
. 	· · · · · · · ·	· · · · · · · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·

Mergesort:
- partition: first half & second half.
- combine: merge the parts
519141317182116110
recursively: $n/2$ $[n/2]$
elements # P [3(4) \$7,191,121,41,81,6]
merge 2 parts
112344561784400
 Works with linked-list or array implementations 'in array implementations, uses O(n) extra space
· ·

Mergesolt

mergesort (A, lo, hi) { if (lo < hi) { // there are

mid $\leftarrow \lfloor (l_0 + h_i)/2 \rfloor$ mergesort (A, lo, mid) mergesort (A, mid+1, hi) merge (A. Iw, mid, hi)

2 items, so work to do

7

Merge for Merge Sort After *, the sorted merge (A, lo, mid, hi) } L+lo sequence is in r & midt 1 n+lo while (L < mid AND r < hi) { B[10]...B[hi] if(A[1] × A[+]){ B[n]~A[1] lazy solution: · · · [.++ · Jelse E B[n] ~ A[r] copy B[10]. B[hi] to A 'fast' solution: Swap A,B. 144 while (L×mid) { B[n] + A[1] L++ ; n++ temp = A A & B while (r < hi) { B[n] + A[r] B + temp 1++ ; n++

Time Complacity of Merge Sort: via tree of recursive calls n ·0(n) > h/2 -O(n)n/4 - n/4 - n/4 - n/4- If n is a power of 2, the tree of recursive calls is a perfect binary tree with n leaves, and height (ogen. . At depth i there are 2ⁱ calls to merge, each to merge two Lists of size "/2" into one of size "/2" Total work at depth i is $2^{\prime} \cdot O(n/2i) = O(n^{2^{\prime}}/i) = O(n)$. · Total work is # depths · O(n) = log n · O(n) = O(n log n).

Recursive Divide ? Conquer Sorting . Partition the sequence A into two parts AI, Az . Recursively sort each of A, and Az . Combine the sorted versions of A, and Az to obtain a sorted version of A 301 Partition Sort . The algorithms differ in how they choose the partition, and how they combine the sorted parts

Quicksort · Uses a pirot p to partition sequence into "small" and "large" elements: small elements < p 2 large elements · combining sorted versions is trivial choose a values pived p SP values > p)) partition recursively sint juo parts. values sp values > P in order in order. · choosing pirots is key to performance.

quicksort (A, lo, hi)? if (lo < hi)? // there are >2 itens if (lo < hi)? // there are >2 itens	
if (lo < hi) { there are >2 items	
A = A = A = A = A = A = A = A = A = A =	
pirot position - par circo, con p	
quicksort (A, 10, pirotposition - 1)	
quick sort (A, pivotposition + 1, hi)	
	• •
3	• •
Quicksort is correct as long as every call to partition () returns and leaves the variables satisfying the following:	· ·
1. le < protposition < hi 2. for every i, j with lo < i < pirot position < j < hi	· ·
A[i] < A[pivot position] < A[hi]	
However efficiency relies critically on choice of pivot.	• •

Ex: Perfect Pirots
· Suppose all elements are distinct, and the pirot is chosen to be the median element in A[10] A[ni].
. Then, every call to Quicksort on sequence of size k >2 makes two secursive calls on sequences of size < k/2:
·By essentially the same argument as used for Merge Sort, this gives us running time of log(n).f(n), where f(n) is the time to run partition on a sequence of size n.
. Assuming O(n) time for partition, this would give us O(n log n) time for Quicksort.
·But: finding medians is too slow in practice
· Optional exercise: Can the median be found in O(n) time?

Ex: Worst Case Pirots. . Suppose all elements are distinct, and the max is always chosen as pirot. • Then every call to Quicksort on a sequence of k22 elements makes one recursive call on a sequence of size K-1, and one on a sequence of size O: MAX . . The recursion free looks like this: . This tree is of height $\Theta(n)$, n-2 giving us a running time n-3 of O(n) f(n), or $\Theta(n^2)$ assuming O(n) for partition. gurcksort takes time $\Theta(n^2)$ in the worst case.

Partition must choose a pirot p. and efficiently re-arrange elements partition (A. W. h.) { pirotinder a choose Pirot (A. lo, hi) // choose pirot swap A[pirotinder] and A[hi] // more pirot out of the usey. p & A[hi] // p is the pirot i ~ lo // Known "small" values will be at indices < i tor (j= lo; j < hi; j++)? //. "already inspected" values will if (ALJ] < p)? swap AEC] and ALJ // swap it with first "non small" Il increase size of "smalls" part. ₹ i+i+1 swap A[i] and A[hi]//move pivot where it belongs. return i // this is pivot position known to be small known to be large not inspected yet correctly being inspected - pivot

Partition Example known Small: known large: Dirot ... pirot into hi J Swap 3 ... 5 V ALi] XA A[j]+4 3 5 ... 3 2 5 ... ••• # A[1] <4 A[1]<4 ₩ 3 7 5 HACj]K4 9 3 2 ••• 5 ... Il swep A[i] & A[hi] A[1] 44 9 5 3 A[1]<4 (1) 6 large small 3 2 ... Divot

Time	complexity of partition is $\Theta(n) + g(n)$,
i int	nere g(n) is time taken by choosePirot.
Q:Ho	w can we choose "good" pivots "fast"?
Quic	cort is the most-used sorting algorithm practise, so there must be a way.
But:	-what qualifies as fast?
· · · · ·	probably a very small constant
· · · · ·	-what qualifies as "good"?
	(given that it must be fast)

Consider : - A small number of bad pirots: JVS makes a small difference in height. - Parfact pivots are not needed for O(nlogn) time. Eg. if pirots are all better than $\frac{1}{3}$: $\frac{2}{3}$, then depth is logs, n So we still get 40.00 O(nlogn).

A[hi] -	fast, but per	forms badly on man	y inputs.		• •
median	-perfect pirots,	but too slow to	compute	· ·	
random:	. If pirots are C	hosen uniformly at rand	om, then		
	Quicksort r	uns in time O(nlogn)) with	• •	• •
	probability	- 1/2n - ie almost	aborys.	••••	
· · · · · · · ·	But: 900 d rai	ndom numbers are not fa	st to make.	· ·	••••
· · · · · · · ·					
median	A LIDTA [N: 7 F	(hi+6)/2			• •
	-tast				
	. not very eas	y to come up with a			• •
	ducas loss	i in ort			
	Very bao			• •	• •

• •		Der)en	ds	er Cr	41	call		2	h ol		Pin	5 8t	s S (2re		ch)Se		••••		• •	· ·	•	•	· ·	•	· ·
• •	 . . .	Ch	-00	sin	9	pe	rfe	Ut.	piu	ots	і і-і	s m	toc	, 5 , 5	lou	ص	f		A	• •	•	· ·	•••	•		• •	•	• •
		Fo	tu	nat M	elu (j. In	ch	oosi ts	ng Car	ρ'ι Λ (r ot	s - dı	the	1t 	are		g	bod		240	აჟ	h"	• •	•	• •	· ·	•	· ·
		Qu	lic	kso	μ Δ	- 2		th	pr	act	ic.	al ·	pir	ot	ch	01 0	e	ef.	г а с Г	-2-)i 29		· · ·	•		· ·		· ·
	· ·	· ·	· ·	"L.	ike	n-)	',)(n			50)) 1	+t: Λ (en pra	ole 101	ise ic	د، له در د	ed.	L. <i>Q</i> . 	S .	•	· ·		· ·	· · ·	•		· ·	• • •	· ·
• •			• •			• •	• •		· ·	· ·	•	· ·	· ·	•	••••	•	• •	•	•	• •	•	• •	· ·	•	• •	• •	•	· ·
•	• •	• •	• •			• •																						
	· · ·	· · ·	· ·	•	· ·	• •	•		· ·	· ·	•	••••		•	••••	•		•	•	· ·	•	• •	•••	•	•	• •	•	
	· · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	•	· · ·	· · ·	•		· · ·	· · ·	•	· · ·		•	· · ·	•		•	•	· ·	•	· · ·	· · ·	•	•	· ·	•	· ·

In practice	<pre>- · · · · · · · · · · · · · · · · · · ·</pre>
. There are setting	is where Mergesort? Insertion Surt are preferred
. In most setting	s, the preferred algorithm is Quicksort
. For small sets	, Selection Sort is faster
. Often, this vari	.aut (or similar) is faster:
ι ι ι ι ι ι ι ι ι ι ι ι	clesort (A, lo, hi)
· · · · · · · · · · · · · · · · · · ·	if (lo < hi) { / there are > 2 items
· · · · · · · · · · · · ·	if (10 + 15 > hi) { less than 15 items salaction Sort (A. lo, hi)
	3 else { pivot position ~ partition (A, lo, hi) // partition
· · · · · · · · · · · · · ·	quicksort (A, 10, pirotposition - 1)
	$\zeta = \frac{1}{2}$
· · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·

End