
Sorting

Sorting

- re - arranging elements of a sequence
S St

. So I S , I S2E . . - E Sn- I

- We will look at 5 sorting algorithms :

- 3 iterative

-2 recursive

Theiteratirealgorithms:

• maintain a partition:
"ons-orted-part.it tdpat

"

• Sort a sequence of n elements in n- l stages

• at each stage, move 1 element from the unsorted
part to the sorted part :

" sorted
"

-÷EE

sort(A) { moves 1- element

• initialize
- repeat n- l times
more 1 element from unsorted to sorted part

}

- the algorithms differ in how they :

- select an element to remove from the unsorted part
- insert it into the sorted part

InsertionS
in unsorted part.

- initially : sorted part is just AH 11€
- repeat n-1 times :

sorted unsorted
- remove the first element y"__from the unsorted part
- insert it into the sorted

part (shifting elements
to the right as needed)

sorted unsorted

insertion
-

sort(A)
for (i = 1 to n- 1){
pivot = A [i] ✗first element in unsorted part
j= i- 1

while(j 70 AND A1J]> pivot){
/ shift all elements in

A-[jti] = A [j] ✗shift jt_h are larger than pivotI :::::::j=j - I
}
A- [jt1] = pivot✗more pivot into position .
}

inse-t-E-E-xamole.TOÉE→
-_Éd f. stage 1 .

② #É€

⑥ €-4b stages.
-- f. stese 3

① É¥¥¥→ .

-- jstase 4 .

③ ¥Ñ#¥
→ a) stage 5-
¥4T
-

Selectionsort unsorted

- initially, sorted partempty F-
- repeat n- 1 times d

- findthe smallest element
in the unsorted part
- move it to the first position '

which becomes the new
last position of sorted part .

this is its
selection

-
sort (A){ final locationfor (i= 1 to n-1){

j= i-1 HI is index of minfouudsofar.
find k=i
min while (Kan){
element
in { if / A1H < A1J]) j=k;
unsorted K = kt 1-

}
swap Ali

- I] and A[j]

}
}

selectionsorl-F-xample-f-fsta.se 2÷÷:÷÷:::Eft
a-if} stage 3

¥4T
-

F-1st .
5 .

¥4T
a--

hefting He±t takes 0.cn) time

- initially, sorted partempty
- make unsorted part into a heap

✓
- repeat n- 1 times
- findthe smallest element } heap extract (vs. D- (n) for the

in the unsorted part stakes log(n) scan in selection

sort)
.

- move it to the first position time
which becomes the new

last position of sorted part .

Consider the organization of array contents :

①
,

if this is the root of the heap , then
it is also the smallest element in

the usorted part , so is in its

correct final position . To usethis

arrangement , the root of the
heap keeps moving , so we have
lots of shifting to do .

②
If this is the root of the heap , then everything works :

- we extract • ; move the last leaf ☐ to the root & do a percolate - down ;
store • where ☐ way , which is now free

,

and is the correct final

location for • ; after which we
have:

BE : we must re - code our heap implementation s.t . the root is at
A [n -☐

,
with the result that the indexing is now less intuitive -

,

"

③ Instead
,
we use a Max- heap

,
and this arrangement :

unsorted sorted

root of
neap

Now : . the heap root is at A [o]
- heap extraction removes •

,
moves ☐ to A [o]

,

freeing up the spot where • belongs .

Leaving us : 1☐#_
Re -coding a min Heap into a Max heap is just replacing

< with > and vice versa .

Selections Heaps
- initially, sorted partempty
- make unsorted part into a max heap 9- heap with max here

- repeat n- 1 times largest > take max element

- findthe"s¥f
"element ←Éi÷÷:in the unsorted part

- move it to the
"firsts+position

" ""t⇒Ée last leaf
from ' end' of heap

which becomes the new
fast position of sorted part . newest element
first

this is its

"p%+
Y new root of

heapsort(A){ final location heap (which then
buildMaxheap(A)

gets percolatedfort i=1 to n-1){ down)
Acn- i] = extract Max

/ I

}
-

} unsorted he_
of size 1 sorted

has smallest element .

Heapsortwithin.linepercolate-downheaps.at(A) {
makeMax Heap (A)
for(i= 1 to n -1) { ✗ more last leaf to root

swap A[o] and A[n- i] ✗
and old root to where

✗ last leaf was.

Site← n - it 1 ✗ size of heap = size
of unsorted part

j ← 0
while (2J + I < size) {
child← 2J + 1

"" " """" "" ""
"" "" ""{

"""

down

g.
child ← 2J + 2

if / A [child] < A [j]) {
swap A [child] and A [j]

j ← child

} else

g.
}
j ← size ✗ terminate the while .

]
}

Heapsorl-F-xample-i.FI#zmaakEiEp
- ←t→
' É#É)stage1---;÷:É÷*⇒ei -

¥31215161>stages
¥1415161] stage}
--

13*415161
'2- Fai

-

É
stagey

←Ft

stages

Heapsorl-Example-i.FI#zmaakEiEp
HEH

*É"} _←i_stage1
15141¥61

fst.ae#-l---.--E4s--6)stage3
¥1415161

+ ¥Ñ)s+age4

¥÷⇒⇒;€314T
stages

←E

imelomplexityoftteratiresortingnlgorithms
• each algorithm does exactly n-1 stages
• the work done at the ith stage varies with the algorithm input)

.

•we take # of item comparisons as a measure of work/time.*

Selectionsort - exactly n- i
'

comparisons to find min.
-

element in unsorted part

Ins Sort - between 1 and i comparisons to find

location for pivot

teapot : - between 1 and 21052 (n- i +1) comparisons
for percolate - down

*Numberofcompaisons-
- We must verify # comparisons (or some constant

times #comparisons) is an upper bound on
work done by each algorithm .

- #of assignments (& swaps) also matters
in actual run time

.

selectionsorton.input of size r , # of comparisons is always
(regardless of input) :

n- I

n- it = Ei
[= I E- I

= Sln - 1)

= ln¥n)
= n÷
= ② (n2)

I-nsertionsort-worstceseupperB-ud.it#comparisons E Éi = ñ¥ = 042)
.

E- 1

Low-end : Worst case : initial sequence is inreyerseor-der.ES
. I

In the i¥ stage we have

This takes i comparisons , because the

sorted part is of size i. .

So
,
Comparisons > É=i =D(ne)

So
,
Insertion Sort worst case is D-(n')

Insertionsorl-B.es/-Case-
Best case : initial sequence is fully ordered .

Then : In each stage exactly 1 comparison is
made .

So : # comparisons = n - I = ② (n) .

Heapsortworstcaseupp.esBound :

comparisons E .
2 toga (n- it1)

E- I

n- I

= 2 Slog24 + 1)
E- I

£ 2£ logan
⇐ I

£ In Logan

= 0(n tog n)

howerBoou.cl?BestCase?- (what input would lead to ☒

movement during percolate -down?

What if we exclude this case ?)

Recorsiredividekconguersort.me
Partition the sequence A into two parts A1 , A2
. Recursively sort each of A , and A 2
. Combine the sorted versions of A , and Az to

obtain a sorted version ofA

Partito

sort

⇐

Combine \
-=
-
I

•The algorithms differ in how they choose the
partition , and how they combine the
sorted parts

Mergesort :
i

• Uses the fact that merging two sorted lists is easy

-¥É¥← IÉF¥-

¥ii
a-

E→¥ ,
"

t.EE
P

•Takes ON time
,
where n is the total size

Mergesort :
- partition : first half & second half

.

- Combine : merge the parts

sort
recursive

¥aµ, It ¥

_HÉ⇒I
merge 2 parts

iEÉ

•Works with linked - list of array implementations

• in array implementations, uses ② (n) extra space

mergesortmergesortCA.to
,
hi){

if /to < hi){ ✗ there are 72 items , so work to do

mid ← ✗ to thi)/21

merge sort (A , to , mid)
merge sort (A , mid+1 , hi)

merge (A , low , mid , hi)
}

}

mergeformergesortmerseln-ioimid.TT After *
,
the sorted

(← to

r←midt1

sequence
is in

n← to

while (l< mid AND r< hi){
if / Ali] - Alr]){ Bflo] . . . B[hi]

.

B. In]- Ah]
ltt '

lazy
'

solution :
}else{

B[n]←A[r] copy Bhi .
.BG:) to -1

.

rtt

, ++ . ,,←.

Rtt

3 Swap A. B :
while(Lamia){
B. In] ← ALL]
At ;nt+ temp ← A

} .

while (r< hi){ A ← B
BED ← Air}

r++;n++
B- temp

3×-3

Timelomploxityoftlergesortiviatreeofrecursirecalk.TTOH
→ me

-12--01"✗
- my - N14 - na- nly- OH

'

-^^ ^ ^ :/ ↳g. nnly Me % Me . % Me % % '

: : : : : : : : :

2 I

1A
041

- If n is a power of 2 , the tree of recursive calls is a perfect binary
tree with n leaves

,
and height login .

. At depth i there are 2
' calls to merge , each to merge two

lists of size Yet ' into one of site "hi
. .

Total work at depth i is 2. (ki) = 0 (n
"ki) =0Gt .

Total work is #depths . OH = login . OH =O(n tog n) .

Recorsiredividekconguersort.me
Partition the sequence A into two parts A1 , A2
. Recursively sort each of A , and A 2
. Combine the sorted versions of A , and Az to

obtain a sorted version ofA

Partito

sort

⇐

Combine \
-=
-
I

•The algorithms differ in how they choose the
partition , and how they combine the
sorted parts

Quicksort
• Uses a pivot p to partition sequence into

"
small

"

and

"

large
" elements : small elements < p < large elements

- combining sorted versions is trivial

É_
choose a

values

ii
$ ← sort

tplplpyth.pe#
values EP values > P

in order. in order .

• choosing pivots is key to performance.

QuicksortquicksortCA.to ,hi){
if (to < hi){ ✗there are 72 items

pivot position← partition (A. to ,hi) ✗ partition

quick sort (A , to , pivotposition - 1)
quick sort 1A , pivotposition + 1- , hi)

}
}

Quicksort is correct as long as every call to partition returns

and leaves the variables satisfying the following :
I. to E pivot position ± hi
2. for

every i.j
with lo E i E pivot position ⇐ je hi

Ali] _< A [pivot position] I A- [hi]

However efficiency relies critically on choice of pivot .

EPerfectPir_t
- Suppose all elements are distinct, and the pivot is chosen to be the

'
median element in Allo] . . . A[hi] .

•Then
, every call to Quick

sort on sequence
of size K 72 makes

two recursive calls on sequences
of site EK12 :

→
☒median

•By essentially the same argument as used for Merge Sort , this

gives us running time of log (n) . f- (n) , where fat is the time
to run partition on a sequence of size n .

• Assuming 0h) time for partition , this would give us 0(n tog n)
time for Quick sort .

• But : finding medians is too slow in practice
.

- Optional exercise : Can the median be found in 04) time ?

F-xiworsi-casepirots.is
oppose all elements are distinct, and the Max is always chosen as pirot .

•Then
every

call to Quicksort on a sequence
of K72 elements

makes one recursive call on a sequence
of size K- I

,
and

one on a sequence of site 0 :

k-F-i.mx:
•The recursion tree looks like this :

•This tree is of height ①(n) ,
giving us a running time

of ②(n) . f- (n)
,
or

②(n2) assuming
②(n) for partition . 11

' Io ¥÷÷÷÷:

Partition
Partition must choose a pivot p . and efficiently re-arrange elements
partition(A. to , h .){
pivot index ← choosePirot (A. to ,hi) ✗ choose pirot
swap A [pivot index] and A [hi]✗move pivot out of the way .

p ← A [hi] Xp is the pivot
is to✗ known

"small " values will be at indices < i

for / j= to ; j < hi ;j++){D.
"

already inspected
"
values will

✗be at indices < j
if I A[j] =p){

swap A-[i] and A [j]
" if we are inspecting a

"small "

A swap it with first
"

non small
"

}
i. ← [+1 4 increase size of

"
smalls" part.

3
swap Ali) and A.fi .] ✗move pivot where it belongs .
return IN this is pivot position

3
to j hi

FttbaÉtipdyt
currently being inspected

_P
pivot

partitionF-xampleknowusma.tl :-
known large:-.i÷Éi

swap pivot into hi

o.to#s-E.;-E.--.lEj
µ A [j] 44

i Alj]d4 It

ÉI iF-

$ A [j] { 4 j

ÉI
¥É
A[j]< 4 I

to

j µ A[j] 44

=É I =É→o-ef-aw-ns-y.ltswap Ali] & Alhi]
sees

j µ A [j] 44 I
ÉÉE

;
¥ÉF¥

sa--a-

j If A[j]<4 ⇒ I¥~T¥⇐÷4l" pivot
y

'
n
- -
.
-

I

• Partition
Time complexity of partition is D-(n) + gln) ,
where gln) is time taken by choosePirot .

• ① : How can we choose "

good
" pivots

"

fast
"

?

• Quick sort is the most - used sorting algorithm
in practise , so there must be a way .

•But : -what qualifies as
"

fast
"

?

probably a very small constant

- what qualifies as
"

good
"

?

(given that it
must be fast)

(onside
- A small number of bad pints :

←

☒ i=☐Éi= ☒and'☐☐^☐☐'is☐^☐☐^☐☐^☐☐☐ii☐ ☐"☐☐"☐☐Hs☐^☐¥tÉ⇒
BBTSDDDDD

makes a small difference in height .

- Perfect pivots are not needed for 0(nlogn) time .

t.FI/---g.ifpirotsareaH--ITIM-
☐ better than I :& ,

☐ ☐☐ ☐☐☐☐ then depth is kg%n
☐ ☐ is THAD IN Dum

intros n n ' So we still get

☐B.
• " 0(nlogn) .

somehsimpfeichoosepirotoptions.athi] - fast
,
but performs badly on many inputs .

. Median -perfect pivots, but too slow to compute

• random :
. If pivots are chosen uniformly at random ,

then

Quicksort runs in time 0 (n tog n) with

probability I - Yan - I almost always .

. BI : good random numbers are not fast to make .

. median { A flu]
,
A [hi]

,
A knit to>12] }

-fast
• not very easy to come up with a
"

very bad
"

input .

(omplexityofQuickso
-Depends critically on how pivots are chosen
- Choosing

"

perfect
"

pivots is too slow for a
practical sorting algorithm

- Fortunately , choosing pivots that are
"

good enough
"

for most inputs can be done fast .
-

- Quicksort - with practical pivot choice strategies -

is D-Lot)
,
but is often described as

"
like 0/n tog n) in practice

"
.

Impractical
•There are settings where Merge sort & Insertion Sort are preferred
• In most settings , the preferred algorithm is Quicksort

• For small sets
,
SelectionSort is faster

.
Often

,
this variant (or similar) is faster :

quicksort (A , to ,hi){
if (to < hi){ ✗there are 72 items

if (to + 15 > hi){ ✗ less than 15 items
selectionsort(A. to ,hi)

}
else {
pivot position← partition (A , lo,hi) ✗ partition

quick sort (A , to , pivotposition - 1)
quick sort 1A , pivotposition + 1- , hi)

}

}
}

End

