
BinarySearchTrees_

CMPT 225

AD-FREE
- Set : unordered collection of values/objects .

- Operations :
• insert tx) I add ✗ to set
. member(4) ✗check if ✗ in set. a.k.a . find4) , search(x), lookup4) . . .
'

remove4) ✗remove ✗ from set
. sized ✗ get size of set
'

emptyDX is set empty ?
- clearc)✗ remove all elements (i.e, make set empty) .

- We call the values we store keyf ,
- We assume the keys are from some ordered sets

ie
,
for any two keys ix.yes , we have exactly
one of yay , ✗=y , yax

- Want implementations where all operations are efficient/fast

Q : What will count as
" fast" ?

ADT-srelated-oses.CO
insider time complexity of operations for simple
list a array implementations

:

insert find remove

un-orderedarqÉorderedavqÉO☒un-orderedLinkedlÉO
ordered linked list 01N OH OH

Q : What will count as
" fast" ?

A : Time Ollogn) In is size of set

someRelatedlontainerADTs.MU/tiset:like set
,
but with multiplicities (aka bag)

• count (x)

• Map : unordered collection of {key, value} pairs ,
associating at most one value with each key .

(e.g. partial function keys→Values)
.

. put (key , ral) ✗in place of insert ✗
• get (key) ✗returns value associated with key

• Dictionary : like map , but associates a collection
of values with each key .

Implementations of these are simple extortions

to implementations of sets , which we focus on.

Binary searchTrees (BSTS)

A BST is
- a binary tree ✗ a structure invariant

- with nodes labelled by keys
- satisfying the following order invariant :
for every two nodes wiv

:

' if u is in the left subtree
of ✓

then key (a) < key G)

. if u is in the right subtree of ✓ ,

then key Cu) > keyG)

F¥
.

←% ⑧

⑦÷÷

F¥
.

←% É¥¥

É③

Every sub-tree of a B5T is a BST .

-← ①
\/ \ /

① ⑤- ④ ⑤
3 / ☒2500 ⑤
A #

keys in this subtree
are > 600

,
4700 .

This makes recursive algorithms very natural .

1T¥: In - order traversal of a BST visits keys in non-decreasing order.

BST Find /Search : examples

find(5) find /7)

← ②⑤y⑤ ?⃝
④ to Q⑥

9

⑤_①t
↳

BST Find : Chooses sub- trees

find(5)I find /7)?

← ←
,,⑤ ?⃝

④ to

⑤_①t
→

BST member/find : examples

Tor
findH11

←%④¥¥9
find→

⑤⇒⑧_④

Some notation

Suppose V is a node of a BST. We write:

leftG) = left child of ✓

rightG) = right child of ✓

theyG) = key labelling x

node (x) = node Y St. keylv)=x .

BSTfindlxE

find (E) {✗ return true if t is in the tree .

}
return findIt , root)

find (t
,
r) ✗ return true if t appears in

{ A subtree rooted at it .

if t a key (r) & ✓ has a left subtree

return find (t , leftA)

if t > key (r) & v has a right subtree
'

return find (t, right (r))

if key (r) = t
return true

return false Av is a leaf
,
does not have t

}

BY-findlt.vlpseudo-code-alternater-e.in
find (t

,
r) ✗ return true if t appears in

{ A subtree rooted at it .

if key (r) = t
return true

if t a key G) & ✓ has a left subtree

return find (t , leftA)

if t > key (r) & v has a right subtree

return find (t, right (r))

return false

}

① : which version is better ?

A : keyG)=t will almost always be false , so the first
version should do fewer comparisons , and usually
be faster .

BSTinsertlxpseudo.cc

insert (E){

✗adds E to the tree
✗ assumes t is not in the tree . already

*

he ← node at which find It,root) terminates **

if t a key (a)

give u a new left child with key t

else
give m a new right child with key t .

}

* Exercise : write the version that does not make this assumption .

☒☒ Exercise : Write the version where the search is explicit .

BSTInsertExamp

insert/it insert (7)

② ←←?⃝
④⑦⑥'

⑥

BSTInsertExamp

insert/My insert (7)

←¥¥:*
④⑥ ① '93

BST insertG) Pseudo - code - explicit search version .

Insert It){ ✗adds E to the tree , if it is not already there.
insert (t , root)

}

insert (t
,
r) ✗ insert 1- in the subtree rooted

at v
,
if it is not there

.

{
if t a key G) & v has a left subtree

insert (t
,

leftA)

if t > key (r) & v has a right subtree

insert (t, right(r))

if t < key G) ✗ here ✓ has no left child

give ✓ a new left child with key t

if t > key G) ✗ here r has no right
child

give ✓ a new right child with key t .

✗if we reach here , t= key4) , so do nothing .
}

I-sertiEBTEF-xample.si) . start with an empty B5T
• insert 5 ,

2
, 3,7 ,

8
, 1,6 in the given order

2) • start with an empty BST
- insert 1,2 ,3,516,78

'

in the order given

* Insertion order affects the shape of a BST
☒ Removal order cantoo -

tnserti-EB-s.F-xamples.lt
.
start with an empty B5T
• insert 5 ,

2
, 3,7 ,

8
, 1,6 in the given order

←
⑤
To

③ ⑥
'

⑧

2) • start with an empty BST
- insert 1,2 ,3,516,78

'

in the order given

①→→-④-⑤-⑥-①-⑧* Insertion order affects the shape of a BST
☒ Removal order cantoo -

BSTremod
- We consider 3 cases

,
of increasing difficulty .

- cas-titisataleo.fi
) find the node ✓ with key4) = t
ii) delete v

E removeG)

③
①É%

L

BSTremod
- We consider 3 cases

,
of increasing difficulty .

- case-titisataleo.fi
) find the node ✓ with key4) = t
ii) delete v

E removeG)⇒
③ §⑦⑨

:

BSTremoreltlfasefitisatanodewithlchildifir.cl
the node V with key(v1 = t

ii) let u be the child of ✓

iii) replace V with the subtree rooted at u .

Example-i.si
'em

;¥⑤_④
remove to

②%①
⇒ ②it § ⇒

'

⑧

⑧ ⑧①
it ⑤ ⑤

%

BSTremoreltlfasefitisatanodewithlchildifir.cl
the node V with key(v1 = t

ii) let u be the child of ✓

iii) replace V with the subtree rooted at u .

Example-i.si
'em;¥ÉÉ_④ remove to

①
⇒¥7.

É%
it § , ⇒ ¥

-

⑧

☒%④
it ⑤

%

BSTremore-case3Preparation-suuessors.IN
an ordered collection ✗ =L . . .Sir , Si , sit . >Site

. . . >

Sin is the predecessor of si

Siti is the successor of Si

Write Sue
✗ (si) = Sin

- Let V= Luis . . .
✓n) be the nodes of the tree

ordered as per an in- order traversal .

. Let K= LK
, , . . . ,kn> be the keys , in

non- decreasing order .

Then : y = key(a) ⇒ such (g) = key (such, (m))

ie
,
the next node has the next key .

BSTremoveicase3preparation-successorsinB.SI
• If S is a set of keys , and nits , then the successor of ×

in S is the smallest value yes st . ✗<y .

E¥ S = { 19 , 27,8 ,3,12 } , Suk (8)
= 12

,
Sue (I2) = 19 , . . .

(s = {3
, 8,12 , 19,27 })
↳↳↳

• In a BST
,
in-order traversal visits keys in order .

Let S be the set of keys in BSTT.
If v is a node of T

,
and key4) = x , then succlx),

the successor of ✗ in S
,
is key (n) where u is the

node of T that an in-order traversal of T

visits next after v.

⇐
←

⑤%

BSTremoveicase3preparation-isuccessorsinB.SI
• If v is a node of BST T

,
we can say

the successor

of ✗ inT is the node of T visited just after ✗ by
an in - order traversal of T .

Then: such) = key (sua (node (xD

•Or : If key4) =✗ , we can find the successor of ✗
by finding the successor node of v , and
getting it's key :

Sue (key (x)) = key(sua(xD

BSTremoveicase3preparation-i.successors .
. If node ✓ has a right child, it is easy to find its successor :

✓

¥f-
such) is the first node visited by an
in - order traversal of the right subtree of ✓

✓
•

\
.

✓

F.
✓

µ
no✓ a

I.→
"

→
"

→
€2s girlA
*

B5T remove : Case 3 Preparation : Successors .

. If node ✓ has a right child, it is easy to find
its successor :

✓

÷ ←
such) is the first node

✗ visited by an in - order
- traversal of the right

E-xsr.gr#u.*btreeof~←
A

÷⇒"¥a"¥Éñ.A

BSTremoveicase3preparation-suaessors.TOfind the successor of node v that has a right child, use:

such) {
u← right G)
while (left (n) exists) {
u← left Cut

}
return a

}

BSTrema
Case 3 : t is at a node with 2 children

i) find the node v with keyG) =t
ii) find the successor of v - call it u .

iii) key (r) ← key (a) ✗ replace t with
sucht) at v.

iv) delete re :

a) if u is a leaf , delete
it

.

b) if u is not a leaf ,
it has one child w ,

replace m with the subtree
rooted at w .

Notice : iv (a) is like case I
iv (b) is like case 2

BST remove (k) when nodeck) has 2 children

ÉX . To remove 5 : 1) Find 5
2) Find successor of 5

3) Replace 5 with its succ .
4) In this example , succ (5) has no

remove 5 : children so just delete the node

✓ ④
where it was .

I ①⇐↳
⇐ \

⇒ / \ A¥¥ ① A
/ ①¥ ⑤ Q
⑤

BST remove (k) when nodeck) has 2 children

ÉX . To remove 5 : 1) Find 5
2) Find successor of 5

3) Replace 5 with its succ .

µ
4) In this example , succ (5) has no

remove 5 : children so just delete the node

④
where it was .

①⇐↳ \
⇒ / \ A¥É¥ ① A

①
⑤

\
⑤

BStrem-EE.de
To remove 6 : 1) Find 6

2) Find successor of 6

3) Replace 6 with its successor

4) Replace such6)with its
remove 6 non- empty subtree .

#Q④⇒
① /① ✗

'
④
' b D ' b

③
☒④④É⑨-④ .

BStrem-EE.de
To remove 6 : 1) Find 6

2) Find successor of 6

3) Replace 6 with its successor

4) Replace such6)with its
remove 6 ↳

non- empty subtree .

⇐↳ I/ a
#Q④• É%¥:

⇒
• ,

' b D ' b
⑨É① ☒ ④

.

Complexity of B5T Operations # keys
11

• Measure as a function of : height (h) or site (n)
.

- All operations essentially involve traversing a path from
the root to a node v , where in the worst case

V is a leaf of maximum depth.
T1#o

- So : find :O 1h1 0 / n)
insert : 01h1

.
OH

.

'
h= ?remove : 0th)

,
OH

• For
"

short bushy" trees leg . 1-1) his small relative to n .
}

• For "tall skinny
"

trees (eg T2) h is proportional to n .

I
E- Can we always have
short bushy BSTS ? °¥..h' QO

Perfect BinaryTrees

. A perfe-tbinaryt.ee of height h is a binary
tree of height h with the Max . number of nodes :

• I I. To .jo
A ↳A. A Hobbit!

7.
4.

Perfect BinaryTrees

. A perfect binary tree of height h is a binary
treeof-he.ith with the Max . number of nodes :

NoI {j. He % A. is✓ A A.
✓

AAH A

✗

¥
4.

✗

Existence of Optimal BSTS

Claim: For every set S of n keys , there exists
a BST for S with height at most 1-+ logan

P⇐f: let h be the smallest integer st . 2h >n , and let m=2!
So : 2h = n > 2h

- I

10522
"
= Logan > log,2h

"

h=logan> h

h < It Logan

- let T be the perfect binary tree of height h

. label the first n nodes of T (as visited
by an in - order traversal) with the

keys of 5 , and delete the remaining
nodes (to get T

') .

•T ' is a BST for S with height h < It Logan

• So
,
there is always a BST with height 0(tog n) .

0ptimalBSTInsertionorder-G.ir
en a set of keys , we can insert them

so as to get a minimum height BST :

Consider : -0
hat can we say

about

-
the key here?

0

← no o/\o
o/\o o/\o o/\o 6 To

Observe : The first key inserted into a
BST is at the root forever

(unless we remove it from the BST)

⇒

0ptimalBSTInsertionorder-G.ir
en a set of keys , we can insert them

so as to get a minimum height BST :

Consider :
What can we say

about

-
the key here?

0 0 (It is the← no o/\o
median

o/\o o/\o o/\o o/\o
key)

Observe : The first key inserted into a
BST is at the root forever

(unless we remove it from the BST)

⇒

Optimal BST Insertion Order .

-0¥
A

* Apply the
"
root is the median key

"

principle
to each sub-tree .

- So
,
there is always a BST with height ~ log n

. Can we maintain min . height with Ollogn) as
we insert i remove keys ?

i Consider : insert 1
-

←←
⇒

6%6 66 ¥0
① ⑤

' B is the only min height B5T for 1
. . 7

.

. A→B rejoined "moving every node
"

•To get 0(tog n) operations , we need another
kind of search tree , other than plain BSTS

.

-To get efficient search trees , give up at least

one of :
- binary
- min. height

.
Next : Self - balancing search trees .

Find

BST member/find : examples

find(5) find /7)

0T¥
,⑤

←
③

④
'
⑥ ④ ↳
-

find 6

⑤-①_④

BST Find : Chooses sub- trees

find(5)I find /7)?

← ←
,,⑤ ?⃝

④ to

⑤_①t
→

EI : Reasoning with the
order invariant ."÷É÷> ↳

/

vi.To :D

key (v1) < key Cu)

key (v2) > key (n)

key (v31 ? key cm)

key(re) < key (w) < key (v3)

⇒ key Cm) a key (v3)

Example-BSTremove.tt/wherenode(t)has1chiIdremoueY#①
-
④ ⇒
0¥⑤

*¥%M
'
⑥

Ée(aF

←
④④

⑥

É

Notice :

Because a perfect binary tree of height h
is Like this:

A-2h - I {internalzht! I { nodes
nodes

2h leaves→
¥1

. . . .

→

2h + 2h - I = 2. 2h - I = 2h"- I

